Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Импульс волны.
Импульс электромагнитного поля.

Описание

Гипотеза о световом давлении на отражающие и поглощающие тела впервые была высказана И. Кеплером (1619г.) для объяснения отклонения хвостов комет, пролетающих вблизи Солнца. Впоследствии Дж. К. Максвелл (1873г.) предсказал величину светового давления, которая оказывается очень малой даже для света, испускаемого такими мощными источниками света как Солнце или электрическая дуга. При проведении измерения в земных условиях действие светового давление оказывается в тысячу раз меньше действия побочных факторов, основными из которых является конвекционные токи и радиометрические эффекты.
Явление давления света состоит в том, что при поглощении электромагнитной волны в некотором теле ему передаётся импульс со стороны волны. Для оценки величины давления электромагнитных волн, таким образом, необходимо оценить импульс (количество движения), переносимый волной.
Рассмотрим следующий пример. Пусть плоская электромагнитная волна падает перпендикулярно на плоскую поверхность некоторого слабо проводящего тела со значениями диэлектрической и магнитной проницаемостей, равными единице.
В соответствии с уравнениями Максвелла в облучаемом теле возбудится ток, плотность которого может быть вычислена по формуле:
j=σE.
Магнитное поле волны будет действовать на ток с силой, величину которой в расчете на единицу объёма тела можно найти по формуле Лоренца:
Fед=[jB]=[μοj,H].
Ввиду взаимной ортогональности векторов напряжённости электрического и магнитного полей волны упрощается расчет величины искомой силы:
FедοjH.
Поверхностному слою тела, объём которого dV, сообщается в единицу времени импульс в соответствии со вторым закона Ньютона, равный:
dK=FедdV=μοjHdV. (1)
В том же слое в единицу времени поглотится (выделится в виде тепла) энергия электромагнитной волны, равная:
dW=jEdV. (2)
Из выражений (1), (2) с учетом соотношения между амплитудами электрического и магнитного полей плоской гармонической волны следует, что:
dK/dW=μοοο)1/2=(εομο)1/2=1/c,
где с – скорость света в вакууме.
Отсюда следует, что плоская электромагнитная волна с плотностью энергии w имеет импульс Kед в единице объёма, переносимый плоской электромагнитной волной за единицу времени, определяемый по формуле:
Kед=w/c.
В курсе механики встречается похожее соотношение между импульсом и энергией релятивистских частиц с нулевой массой покоя. Подобное совпадение не удивительно, ибо согласно современным представлениям электромагнитная волна представляет собой поток обладающих нулевой массой фотонов, движущихся со скоростью света.
Поток энергии и импульс в единице объёма электромагнитной волны связаны между собой:
Kед=S/c2.

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Если электромагнитные волны поглощаются или отражаются телами, то из теории Максвелла следует, что электромагнитные волны должны оказывать на тела давление. Давление электромагнитных волн объясняется тем, что под действием электрического поля волны заряженные частицы вещества начинают упорядоченно двигаться и подвергаются со стороны магнитного поля волны действию сил Лоренца. Однако значение этого давления ничтожно. Можно оценить, что при средней мощности солнечного излучения, приходящего на Землю, давление для абсолютно поглощающей поверхности составляет примерно 5мкПа. В исключительно тонких экспериментах, ставших классическими, П. Н. Лебедев в 1899 г. Доказал существование светового давления на твердые тела, а в 1910 г. – на газы. Опыты Лебедева имели огромное значение для утверждения выводов теории Максвелла о том, что свет представляет собой электромагнитные волны.
Существование давления электромагнитных волн приводит к выводу о том, что электромагнитному полю присущ механический импульс. Импульс электромагнитного поля
p=W/c,
где W – энергия электромагнитного поля. Выражая импульс как p=mc (поле в вакууме распространяется со скоростью c), получим p=mc=W/c, откуда
W=mc2.
Это соотношение между массой и энергией свободного электромагнитного поля является универсальным законом природы. Согласно специальной теории относительности, выражение имеет общее значение и справедливо для любых тел независимо от их внутреннего строения.

 

Реализации эффекта

Давление света - давление, производимое светом на отражающие или поглощающие тела. Давление света впервые было экспериментально открыто и измерено П. Н. Лебедевым (1899). Величина давления света даже для самых сильных источников света (Солнце, электрическая дуга) ничтожно мала и маскируется в земных условиях побочными явлениями (конвекционными токами, радиометрическими силами), которые могут превышать в тысячи раз величину давления света. Для обнаружения давления света Лебедев изготовил специальные приборы и проделал опыты, представляющие замечательный пример искусства эксперимента. Основной частью прибора Лебедева служили плоские лёгкие крылышки (диаметром 5 мм) из различных металлов (платина, алюминий, никель) и слюды. Крылышки подвешивались на тонкой стеклянной нити и помещались внутри стеклянного сосуда G (рис. 1), из которого выкачивался воздух. На крылышки с помощью специальной оптической системы и зеркал направлялся свет от сильной электрической дуги В. Перемещение зеркал S1, S4 давало возможность изменять направление падения света на крылышки. Устройство прибора и методика измерения позволили свести до минимума мешающие радиометрические силы и обнаружить давление света на отражающие или поглощающие крылышки, которые под его воздействием отклонялись и закручивали нить. В 1907—10 Лебедев исследовал давление света на газы, что было ещё труднее, так как давление света на газы в сотни раз меньше, чем на твёрдые тела.
Результаты экспериментов Лебедева и более поздних исследователей полностью согласуются со значением давления света, определённым на основе электромагнитной теории света (Дж. К. Максвелл, 1873), что явилось ещё одним важным подтверждением теории электромагнитного поля Фарадея — Максвелла. Согласно электромагнитной теории света, давление, которое оказывает на поверхность тела плоская электромагнитная волна, падающая перпендикулярно к поверхности, равно плотности и электромагнитной энергии (энергии, заключённой в единице объёма) около поверхности. Эта энергия складывается из энергии падающих и энергии отражённых от тела волн. Если мощность электромагнитной волны, падающей на 1 см2 поверхности тела, равна S эрг/см2( сек), коэффициент отражения электромагнигной энергии от поверхности тела равен R, то вблизи поверхности плотность энергии u = S• (1+R)/c (с — скорость света). Этой величине и равно давление света на поверхность тела: р = S (1 + R)/c (эрг/см3 или дж/м3). Например, мощность солнечного излучения, приходящего на Землю, равна 1,4•106 эрг/(см2(сек) или 1,4•103 вт/м2, следовательно, для абсолютной поглощающей поверхности (когда R = 0) р = 4,3 •10-5 дин/см2 = 4,3•10-6 н/м2. Общее давление солнечного излучения на Землю равно 6•1013 дин (6•108 н), что в 1013 раз меньше силы притяжения Солнца.
Изотропное равновесное излучение также оказывает давление на систему (тело), с которой оно находится в термодинамическом равновесии:
р = u/3=1/3•sT4,
где s — постоянная Стефана — Больцмана, Т — температура излучения. Существование давления света показывает, что поток излучения обладает не только энергией, но и импульсом, а следовательно, и массой.
С точки зрения квантовой теории, давление света — результат передачи телам импульса фотонов (квантов энергии электромагнитного поля) в процессах поглощения или отражения света. Квантовая теория даёт для давления света те же формулы.
Особо важную роль давление света играет в двух противоположных по масштабам областях явлений — в явлениях астрономических и явлениях атомарных. В астрофизике давление света наряду с давлением газа обеспечивает стабильность звёзд, противодействуя силам гравитационного сжатия (при температуре ~ 107 градусов в недрах звёзд давление света достигает десятков млн. атмосфер). Давление света существенно для динамики околозвёздного и межзвёздного газа; действием давления света объясняются некоторые формы кометных хвостов. Давление света вызывает возмущение орбит искусственных спутников Земли (особенно лёгких спутников-баллонов типа «Эхо» с большой отражающей поверхностью). К атомарным эффектам давления света относится «световая отдача», которую испытывает возбуждённый атом при испускании фотона. К давлению света близко явление передачи гамма-квантами части своего импульса электронам, на которых они рассеиваются, или ядрам атомов кристалла в процессах излучения и поглощения.
Схема опыта Лебедева
Рис.1

 

 

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина