![]() ![]() |
|
Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии |
![]() Стартовая страница |
![]() О системе |
![]() Технические требования |
![]() Синтез |
![]() Обучающий модуль |
![]() Справка по системе |
![]() Контакты |
![]() | Гидродинамических автоколебаний эффект |
![]() |
Анимация
Описание
Явление возникновения акустических волн в турбулентной затопленной струе жидкости при взаимодействии с препятствием определенной формы называется гидродинамическим автоколебательным эффектом.
Устройства, преобразующие кинетическую энергию струи жидкости в энергию акустических колебаний, называются гидродинамическими излучателями.
Работа гидродинамического излучателя основана на генерировании возмущений в жидкой среде в виде некоторого поля скоростей и давлений при взаимодействии вытекающей из сопла струи с препятствием определенной формы и размеров, либо при принудительном периодическом прерывании струи. Эти возмущения оказывают обратное действие на основание струи у сопла, способствуя установлению автоколебательного режима. Механизм излучения звука возмущениями может быть различным в зависимости от конструкции гидродинамического излучателя, которая принципиально отличается от конструкции газоструйных излучателей для воздушной среды, хотя гидродинамические излучатели и называют жидкостными свистками.
Наибольшее распространение получили пластинчатые гидродинамические излучатели, состоящие из погруженных в жидкость прямоугольного щелевого сопла (рис. 1) и заостренной в сторону струи пластинки, которая крепится в узловых точках (рис. 1а) либо консольно (рис. 1б).
Схема пластинчатого гидродинамического излучателя с креплением пластинки в узловых точках
Рис. 1а
Обозначения:
1 - сопло;
2 - пластинка;
3 - точки крепления.
Схема пластинчатого гидродинамического излучателя с консольным креплением пластинки
Рис. 1б
Обозначения:
1 - сопло;
2 - пластинка.
При натекании на пластинку потока жидкости в ней возбуждаются изгибные колебания, основная собственная частота которых:
,
где a - коэффициент пропорциональности, зависящий от способа крепления пластинки;
l - длина пластинки;
t - толщина;
Е - модуль упругости;
r - плотность материала, из которого изготовлена пластинка.
Если все перечисленные величины выражены в единицах системы СГС, то при креплении пластинки в двух узлах a = 2,82, а консольно a = 0,162.
Наличие присоединенной массы несколько принижает значение fPL. В натекающей струе возникают автоколебания с частотой:
fc=kn/h,
где n - скорость струи;
h - расстояние между соплом и пластинкой;
k - коэффициент пропорциональности, зависящий от n и h.
Для возбуждения интенсивных колебаний необходимо совпадение fc и fPL. На практике настройка пластины в резонанс с колебаниями струны не представляет особых трудностей и осуществляется регулировкой скорости истечения струи и изменением расстояния между соплом и пластинкой. Пластинчатые гидродинамические излучатели генерируют колебания с частотами ~2..35 кГц. Излучение акустической энергии при работе пластинчатых гидродинамических излучателей осуществляется в основном за счет колеблющейся пластинки в направлении, перпендикулярном ее плоскости, с максимумом посредине опор (рис. 1а) либо вблизи свободного конца (рис. 1б).
Ключевые слова
Разделы наук
Используется в научно-технических эффектах
![]() | Устройства для создания мощных акустических колебаний (Сирены) |
Используется в областях техники и экономики
1 | ![]() | Электроакустическая, ультразвуковая и инфразвуковая техника |
Используются в научно-технических эффектах совместно с данным эффектом естественнонаучные эффекты
1 | ![]() | Гидродинамических автоколебаний эффект (Гидродинамических автоколебаний эффект) |
Применение эффекта
Гидродинамические излучатели применяются для интенсификации различных технологических процессов, таких, как эмульгирование нерастворимых друг в друге жидкостей (например, получение высококачественных эмульсий вода-масло, вода-ртуть), диспергирование твердых частиц в жидкостях (например, графита в масле), ускорение процессов кристаллизации в растворах, расщепление молекул полимеров, очистка стального литья после прокатки и т.д.
Пример 1. Пластинчатый гидродинамический излучатель с кольцевым соплом.
В конструкции гидродинамического излучателя имеется кольцевое щелевое сопло 1 (рис. 2), образованное двумя коническими поверхностями, а колеблющимся препятствием служит полый цилиндр 2, который разрезан вдоль образующих так, что создается система расположенных консольных пластин.
Схема пластинчатого гидродинамического излучателя
Рис. 2
Возможен и другой механизм излучения гидродинамического излучателя - за счет пульсации кавитационной области, образующейся между соплом и припятствием (рис. 3).
Схема стержневого гидродинамического излучателя
Рис. 3
Основные элементы такого излучателя - конусно-цилиндрическое сопло 1, препятствие-отражатель 2 и резонансная колебательная система в виде стержней 3, расположенных вдоль образующих цилиндра с осью сопло - отражатель. Она может быть изготовлена либо в виде набора скрепленных по краям стержней, либо в виде пустотелого цилиндра с профрезерованными вдоль образующих пазами. Отражающие поверхности могут быть выпуклыми, плоскими и вогнутыми. Лучшим в энергетическом отношении является вогнутый отражатель в виде лунки, обеспечивающий образование кавитационной области, содержимое которой с определенной частотой (частотой основного тона) выбрасывается из зоны сопло - отражатель. Для возбуждения интенсивных колебаний необходимо определенное соотношение между диаметром лунки D на торце отражателя и диаметром сопла d при определенной форме отражающей поверхности. Пульсации кавитационной области создают переменные поля скоростей и давлений, которые возбуждают в стержнях 3 изгибные колебания на их собственной частоте, что дает вклад в излучение, повышая его интенсивность и монохроматичность. Собственная частота стержней fст определяется по той же формуле, что и fпл (коэффициент a при двустороннем закреплении стержней равен 1,03, а при консольном -0,7). Гидродинамические излучатели подобной конструкции называются стержневыми.
Принцип излучения за счет пульсации кавитационной области возможен в конструкции гидродинамического излучателя, подобной изображенной на рис. 3, если в дне цилиндрического припятствия имеется отверстие диаметром d. Кавитационная область тороидальной формы образуется между торцами сопла и отражателя (сопла и цилиндра). Для этого необходима скорость истечения жидкости 20-30 м/с и напор примерно 2-10 атм. Спектр частот генерируемых колебаний - 0,3-25 кГц.
Возможны гидродинамические излучатели, действие которых основано на эффекте Бернулли. Они состоят из кругового сопла 1 (рис. 4) и защемленной по контуру мембраны 2.
Схема гидродинамического излучателя
Рис. 4
Струя, вытекая из сопла, периодически меняет давление в зоне сопло - мембрана, вызывая колебания мембраны. При этом в жидкость излучаются мембраной низкочастотные колебания. Колебания излучаются с основным тоном, соответствующим собственной частоте изгибных колебаний мембраны.
Кроме перечисленных, существуют роторные излучатели, основными рабочими элементами которых являются соосно расположенные цилиндры - статор и ротор. Каждый из них на боковых поверхностях снабжен системой прорезей или отверстий. Работа их подобна работе сирен и сводится к периодическому прерыванию струи жидкости, что достигается чередованием прорезей статора и ротора при вращении и приводит к возникновению в рабочей среде пульсаций давления. Частота роторных гидродинамических излучателей определяется количеством прорезей и числом оборотов ротора.
Гидродинамические излучатели способны излучать акустические колебания в широком частотном диапазоне: от 0,3 до 35 кГц с максимальной интенсивностью ~1,5-2,5 Вт/см2. Общими преимуществами гидродинамических излучателей являются дешевизна получаемой акустической энергии, простота конструкций и их эксплуатации, а так же тот факт, что струя жидкости является в них, с одной стороны, генератором колебаний, а с другой - объектом озвучивания. Преимущество пластинчатых гидродинамических излучателей - возможность работы при относительно низких напорах, начиная примерно с 2 атм.; недостатки - частые поломки пластин из-за усталостных напряжений, трудность расположения опор точно в узловых точках, затруднения при генерировании колебаний в вязких средах и средах с твердыми примесями. Стержневые гидродинамические излучатели лишены указанных недостатков, однако они работают при повышенных напорах, начиная примерно с 4 атм. Роторные гидродинамические излучатели существенно сложнее пластинчатых и стержневых как в конструктивном отношении (из-за необходимости обеспечения высокой соосности ротора и статора, наличие вращающихся элементов и т.д.), так и в эксплуатации, но они имеют наибольшую по сравнению с другими гидродинамическими излучателями производительность.
Реализации эффекта
Техническая реализация эффекта
Простейшая техническая реализация представлена на рис. 1а. В качестве сопла можно использовать бытовой пылесос со щелевой насадкой, в качестве пластины - полоску тонкой (0,1мм) стальной фольги, зажатую одним концом в массивное основание. Изменяя длину консольной части пластины (то есть резонансную частоту свободных колебаний пластины) можно получить различные частоты автоколебаний, меняя одновременно расстояние от сопла до пластины, как это описано в содержательной части. При этом частота автоколебаний будет всегда практически совпадать с частотой собственных колебаний.
Литература
1. Ультразвук / Под ред. И.П. Голяминой.- М.: Советская Энциклопедия, 1979.
2. Бреховских Л.М., Гончаров В.В. Введение в механику сплошных сред.- М.: Наука, 1982.
3. Акустополяризационные измерения характеристик анизотропии горных пород (методические рекомендации). Апатиты, 1985.
Стартовая страница О системе Технические требования Синтез Обучающий модуль Справка по системе Контакты | |
![]() |
|
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина |