Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Поверхностные упругие волны
Упругие волны, распространяющиеся вдоль свободной границы твердого тела или вдоль границы твердого тела с другими средами

Анимация

Описание

Существование поверхностных волн (ПВ) является следствием взаимодействия продольных и (или) поперечных упругих волн при отражении этих волн от плоской границы между различными средами при определенных граничных условиях для компонент смещения. ПВ в твердых телах бывают двух классов: с вертикальной поляризацией, у которых вектор колебательного смещения частиц среды расположен в плоскости, перпендикулярной к граничной поверхности, и с горизонтальной поляризацией, у которых вектор смещения частиц среды параллелен граничной поверхности.

К наиболее часто встречающимся частным случаям ПВ можно отнести следующие.

1) Волны Рэлея (или рэлеевские), распространяющиеся вдоль границы твердого тела с вакуумом или достаточно разреженной газовой средой. Энергия этих волн локализована в поверхностном слое толщиной от l до 2l, где l - длина волны. Частицы в волне Рэлея движутся по эллипсам, большая полуось w которых перпендикулярна границе, а малая u - параллельна направлению распространения волны (рис. 1а).

 

Поверхностная упругая волна Рэлея на свободной границе твердого тела

 

 

Рис. 1а

 

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

 

Фазовая скорость волн Рэлея cR ≈ 0.9ct, где ct - фазовая скорость плоской поперечной волны.

2) Затухающие волны рэлеевского типа на границе твердого тела с жидкостью при условии, что фазовая скорость в жидкости сL < сR в твердом теле (что справедливо почти для всех реальных сред). Эта волна непрерывно излучает энергию в жидкость, образуя в ней отходящую от границы неоднородную волну (рис. 1б).

 

Поверхностная упругая затухающая волна рэлеевского типа на границе твердого тела и жидкости

 

 

Рис. 1б

 

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы;

наклонные линии - фронты отходящей волны.

 

Фазовая скорость этой волны с точностью до процентов равна сR , коэффициент затухания на длине волны al ~ 0.1. Распределение по глубине смещений и напряжений - такое же, как в волне Рэлея.

3) Незатухающая волна с вертикальной поляризацией, бегущая по границе жидкости и твердого тела со скоростью, меньшей сL (и, соответственно, меньшей, чем скорости продольной и поперечной волн в твердом теле). Структура этой ПВ совсем другая, чем у рэлеевской волны. Она состоит из слабо неоднородной волны в жидкости, амплитуда которой медленно убывает при удалении от границы, и двух сильно неоднородных продольной и поперечной волн в твердом теле (рис. 1в).

 

Незатухающая ПВ на границе твердого тела и жидкости

 

 

Рис. 1в

 

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

 

Энергия волны и движение частиц локализованы в основном в жидкости.

4) Волна Стонли, распространяющаяся вдоль плоской границы двух твердых сред, модули упругости и плотности которых не сильно различаются. Такая волна состоит (рис. 1г) как бы из двух рэлеевских волн - по одной в каждой среде.

 

Поверхностная упругая волна Стонли на границе двух твердых сред

 

 

Рис. 1г

 

Обозначения:

х - направление распространения волны;

u,w - компоненты смещения частиц;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

 

Вертикальные и горизонтальные компоненты смещений в каждой среде убывают при удалении от границы так, что энергия волны оказывается сосредоточенной в двух граничных слоях толщиной ~ l. Фазовая скорость волны Стонли меньше значений фазовых скоростей продольных и поперечных волн в обеих граничащих средах.

5) Волны Лява - ПВ с горизонтальной поляризацией, которые могут распространяться на границе твердого полупространства с твердым слоем (рис. 1д).

 

Поверхностная упругая волна Лява на границе "твердое полупространство - твердый слой"

 

 

Рис. 1д

 

Обозначения:

х - направление распространения волны;

кривые изображают ход изменения амплитуды смещений при удалении от границы.

 

Эти волны - чисто поперечные: в них имеется только одна компонента смещения v, а упругая деформация в волне Лява представляет собой чистый сдвиг. Смещения в слое (индекс 1) и в полупространстве (индекс 2) описываются выражениями:

 

v1 = ( A/cos(s1h)) cos(s1(h - z))sin(wt - kx);

 

v2 = A·exp(s2 z) sin(wt - kx),

 

где t - время;

w - круговая частота;

s1 = ( kt12 - k2)1/2;

s2 = ( k2 - kt22 )1/2;

k - волновое число волны Лява;

kt1, kt2 - волновые числа поперечных волн в слое и в полупространстве соответственно;

h - толщина слоя;

А - произвольная постоянная.

 

Из выражений для v1 и v2 видно, что смещения в слое распределены по косинусу, а в полупространстве экспоненциально убывают с глубиной. Для волн Лява характерна дисперсия скорости. При малых толщинах слоя фазовая скорость волны Лява стремится к фазовой скорости объемной поперечной волны в полупространстве. При wh/ct2 >>1 волны Лява существуют в виде нескольких модификаций, каждая из которых соответствует нормальной волне определенного порядка.

К ПВ относят и волны на свободной поверхности жидкости или на границе раздела двух несмешивающихся жидкостей. Такие ПВ возникают под влиянием внешнего воздействия, например, ветра, выводящего поверхность жидкости из равновесного состояния. В этом случае, однако, упругие волны существовать не могут. В зависимости от природы возвращающих сил различают 3 типа ПВ: гравитационные, обусловленные в основном силой тяжести; капиллярные, обусловленные в основном силами поверхностного натяжения; гравитационно-капиллярные (см. описание ФЭ "Поверхностные волны в жидкости").

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Поскольку сейсмические ПВ слабо затухают с расстоянием, ПВ, прежде всего Рэлея и Лява, используют в геофизике для определения строения земной коры. В ультразвуковой дефектоскопии ПВ используют для всестороннего неразрушающего контроля поверхности и поверхностного слоя образца. В акустоэлектронике (АЭ) с помощью ПВ можно создавать микроэлектронные схемы обработки электрических сигналов. Преимуществами ПВ в устройствах АЭ являются малые потери на преобразование при возбуждении и приеме ПВ, доступность волнового фронта, что позволяет снимать сигнал и управлять распространением волны в любых точках звукопровода и т.д.

Реализации эффекта

Техническая реализация эффекта

Волну Рэлея можно получить на свободной поверхности достаточно протяженного твердого тела (граница "твердая среда - воздух" ). Для этого излучатель упругих волн (продольных, поперечных) размещают на поверхности тела (рис. 2), хотя, в принципе, источник волн может находиться и внутри среды на некоторой глубине (модель очага землетрясения).

 

Генерирование волны Рэлея на свободной границе твердого тела

 

 

Рис. 2

 

Литература

1. Ультразвук / Под ред. И.П. Голяминой. - М.: Советская Энциклопедия, 1979. - С. 400.

2. Бреховских Л.М., Гончаров В.В. Введение в механику сплошных сред. - М.: Наука, 1982.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина