Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Аэродинамический нагрев
Нагрев тел, движущихся с большой скоростью в воздухе или другом газе

Анимация

Описание

Аэродинамический нагрев - нагрев тел, движущихся с большой скоростью в воздухе или другом газе. Аэродинамический нагрев - результат того, что налетающие на тело молекулы воздуха (газа) тормозятся вблизи тела. Если полет совершается со сверхзвуковой скоростью, торможение происходит прежде всего в ударной волне, возникающей перед телом. При торможении молекул воздуха в пограничном слое, непосредственно у поверхности тела, энергия их хаотического движения возрастает, что ведет к росту температуры газа в этом слое и аэродинамическому нагреву тела. Например, при полете сверхзвукового самолета со скоростью 1 км/с температура торможения составляет около 700 К, а при входе космического аппарата в атмосферу Земли с первой космической скоростью (~7,6 км/с) температура торможения достигает 8300 К. Если в первом случае температура обшивки самолета может быть близка к температуре торможения, то во втором случае поверхность космического аппарата неминуемо начнет разрушаться из-за неспособности материалов выдерживать столь высокие температуры.

Максимальная температура, до которой может нагреваться газ в окрестности движущегося тела, близка к так называемой температуре торможения Т0:

 

,

 

где - температура набегающего воздуха;

V - cкорость полета тела;

cр - удельная теплоемкость газа при постоянном давлении.

 

С увеличением скорости движения тела температура воздуха за ударной волной и в пограничном слое возрастает.

Степень аэродинамического нагрева существенно зависит от формы тела, которая учитывается путем введения аэродинамического коэффициента сопротивления Сх. Различают два вида аэродинамического нагрева: конвективный и радиационный. Конвективный нагрев - это перенос тепла из области пограничного слоя к поверхности движущегося объекта путем теплопроводности и диффузии. Радиационный нагрев - это перенос тепла за счет излучения молекул газа. Соотношение между тепловыми потоками конвекционными и радиационными зависят от скорости движения объекта. До значений первой космической скорости преобладает конвективный нагрев, при второй космической скорости (~11200м/с) конвективные и радиационные потоки примерно равны, а при скоростях более 13000 м/с преобладающим тепловым потоком становится радиационный.

Характеристики аэродинамического нагрева газов изучаются на установках, носящих название ударные трубы. Ударную волну можно создать путем взрыва, электрического разряда и т.д.

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Космический корабль многоразового использования «Буран» защищен от аэродинамического нагрева размещением на его поверхности теплозащитных керамических покрытий.

Реализации эффекта

Техническая реализация эффекта

С аэродинамическим нагревом связана проблема «теплового барьера», возникающая при создании сверхзвуковых самолетов и ракет-носителей. Важную роль аэродинамический нагрев играет при возращении космических аппаратов в атмосферу Земли, а также при входе в атмосферу планет со скоростями порядка второй космической и выше. Для борьбы аэродинамическим нагревом применяются специальные системы теплозащиты.

Аэродинамический нагрев обычно играет роль отрицательного фактора. Для борьбы с аэродинамическим нагревом летательные аппараты оснащают специальными системами теплозащиты. Существуют активные и пассивные методы теплозащиты. При активных методах газообразный или жидкий охладитель подается принудительно к защищаемой поверхности. Газообразный охладитель как бы загораживает поверхность от воздействия высокотемпературной внешней среды, а жидкий охладитель, образующий на поверхности защитную пленку, поглощает подходящую к поверхности теплоту в результате нагрева и испарения пленки, а также последующего нагрева паров. При пассивных методах теплозащиты воздействие теплового потока принимает на себя специальным образом сконструированная  внешняя  оболочка или специальное покрытие, наносимое на основную конструкцию. Наибольшее распространение получила теплозащита с помощью разрушающихся поверхностей, в которой тепловой поток расходуется на процессы плавления, испарения, сублимации и химических реакций. Материалы таких покрытий - стеклопластики и другие пластмассы на органических и кремнийорганических связующих. Перспективны также углерод и углеродные композиции.

Литература

1. Краснов Н.Ф. Аэродинамика тел вращения.- М.: Оборонгиз, 1958.

2. Основы теплопередачи в авиационно-космической технике.- М.: Наука, 1975.- С.349.

3. Физическая энциклопедия.- М.: Советская энциклопедия, 1988.- C.167-168.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина