|
 |
Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии
|
Общий каталог эффектов
 | Вихревое движение газа |
 |
Вихревое движение газа
Описание
Вихревое движение - движение жидкости или газа, при котором их малые элементы (частицы) перемещаются не только поступательно, но и вращаются около некоторой мгновенной оси.
Количественно вихревое движение можно охарактеризовать вектором w угловой скорости вращения частиц, который зависит от координат точки в потоке и от времени. Вектор w называется вихрем среды в данной точке; если w = 0 в некоторой области течения, то в этой области течение безвихревое. Вращающиеся частицы среды могут образовывать вихревые трубки (рис. 1) или отдельные слои. Вихревая трубка не может иметь внутри жидкости ни начала, ни конца; она или может быть замкнутой (вихревое кольцо), или должна иметь начало и конец на границах жидкости (например, на поверхности обтекаемого тела; на поверхности сосуда, внутри которого заключена жидкость; на поверхности земли — в случае смерчей, на поверхности воды или на дне реки — в случае вихрей в текущей воде и т.п.).
Вихревые трубки.
Рис.1
Присутствие в жидкости вихрей вызывает появление в ней добавочных скоростей. При наличии в жидкости системы вихрей они влияют на движение друг друга. Так, например, 2 вихря (рис. 2) равной по величине и противоположной по знаку интенсивности Г сообщают друг другу равные по величине и одинаково направленные скорости v, т. е. движутся поступательно; 2 вихря, имеющие одинаковые по абсолютной величине и знаку интенсивности, вращаются вокруг оси, проходящей через середину расстояний между ними.
Скорости, сообщаемые друг другу двумя плоскими вихрями.
Рис.2
Если 2 вихревых кольца имеют общую ось (рис. 3) и одинаковое направление вращения, то переднее кольцо вследствие скоростей, сообщаемых задним, увеличивается в диаметре и замедляется; заднее при этом уменьшается в диаметре, проходит сквозь переднее, т. е. они меняются местами, и весь процесс начинается сначала («игра» вихревых колец).
Взаимодействие вихревых колец.
Рис.3
Ключевые слова
Разделы наук
Используется в научно-технических эффектах
Используется в областях техники и экономики
Используются в научно-технических эффектах совместно с данным эффектом естественнонаучные эффекты
1 |  | Критерий подобия Кнудсена (Критерий подобия Кнудсена) |
2 |  | Аэродинамическое качество (Аэродинамическое качество) |
2 |  | Критерии подобия. Число Маха (Критерии подобия. Число Маха) |
2 |  | Сверхзвуковой пограничный слой при обтекании тела потоком с большим числом М (Сверхзвуковой пограничный слой при обтекании тела потоком с большим числом М) |
1 |  | Отрыв пограничного слоя от поверхности (Отрыв пограничного слоя от поверхности) |
4 |  | Истечение газа со сверхзвуковой скоростью в область, где давление меньше давления в струе (Истечение газа со сверхзвуковой скоростью в область, где давление меньше давления в струе) |
4 |  | Возникновение резкого увеличения давления, скорости, температуры и уменьшение скорости течения газа в сверхзвуковой области (Точка разветвления струй, критическая скорость потока при обтекании) |
2 |  | Общие условия перехода от дозвукового течения к сверхзвуковому и обратно (Условия перехода от дозвукового течения к сверхзвуковому и обратно) |
2 |  | Распределение давления по профилю крыла (Распределение давления по профилю крыла) |
7 |  | Вихревое движение газа (Вихревое движение газа) |
4 |  | Сопротивление движению тела со стороны обтекающей его жидкости или сопротивление движению жидкости, вызванное влиянием стенок труб, каналов и т.д. (Гидродинамическое сопротивление) |
3 |  | Струя – форма течения жидкости, при которой жидкость(газ) течёт в окружающем пространстве, заполненном жидкостью (газом) с отличающимися от струи параметрами (скоростью, температурой, плотностью, составом и тому подобное) (Течение в сверхзвуковой струе) |
4 |  | Распространение ударных волн (Распространение возмущений, содержащих разрывы плотности, давления и скорости распространения, в нелинейных средах) |
2 |  | Резкое изменение давления в жидкости (Гидравлический удар) |
1 |  | Ускорение ламинарного воздушного потока при прохождении через плавное сужение (Инжекции эффект) |
1 |  | Трение при относительном движении соприкасающихся тел (Трение скольжения) |
2 |  | Создание момента силы (Создание момента силы ) |
2 |  | Эффект передачи момента силы посредством твёрдого тела (Механического рычага эффект) |
1 |  | Кинематическая характеристика течения жидкости или газа, служащая мерой завихренности течения (Циркуляция скорости) |
3 |  | Рост толщины пограничного слоя с ростом скорости (Рост толщины пограничного слоя с ростом скорости) |
1 |  | Толщина пограничного слоя и толщина вытеснения (Толщина пограничного слоя и толщина вытеснения) |
2 |  | Турбулентное течение в пограничном слое (Турбулентное течение в пограничном слое) |
1 |  | Ламинарное течение в пограничном слое (Ламинарное течение в пограничном слое) |
2 |  | Течение идеальной жидкости (Идеальная жидкость) |
2 |  | Центр давления (Центр давления) |
1 |  | Эффект аэроупругости (Эффект аэроупругости) |
1 |  | Упругая деформация изгиба твердых тел (Деформация изгиба) |
1 |  | Давление при контакте (Давление при контакте) |
3 |  | Истечение газа со сверхзвуковой скоростью в область, где давление больше давления в струе (Истечение газа со сверхзвуковой скоростью в область, где давление больше давления в струе) |
1 |  | Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц (Теплопроводность. Закон Фурье) |
2 |  | Трение при турбулентном течении (Трение при турбулентном течении) |
2 |  | Объемный расход жидкости или газа (Объемный расход) |
1 |  | Движение жидкости в пограничном слое (Движение жидкости в пограничном слое) |
2 |  | Переход ламинарного пограничного слоя в турбулентный. Критическое число Рейнольдса (Переход ламинарного пограничного слоя в турбулентный. Критическое число Рейнольдса) |
1 |  | Возникновение скачка уплотнения воздуха, образующегося перед летящим со звуковой скоростью телом и имеющим форму конуса (Волны возмущения у тела, движущегося с дозвуковой скоростью) |
Применение эффекта
Подавляющее большинство течений жидкости и газа, которые происходят в природе или осуществляются в технике, представляет собой вихревое движение. Например, движение воды в трубе всегда является вихревым движением как в случае ламинарного течения, так и в случае турбулентного течения. Вращение элементарных объёмов обусловлено здесь тем, что на поверхности стенки из-за прилипания жидкости скорость её равна нулю, а при удалении от стенок быстро возрастает, так что скорости соседних слоёв значительно отличаются друг от друга. В результате тормозящего действия нижнего слоя и ускоряющего действия верхнего (рис. 1) возникает вращение частиц, т. е. имеет место вихревое движение. Примерами вихревого движения являются: вихри воздуха в атмосфере, которые часто принимают огромные размеры и образуют смерчи и циклоны; водяные вихри, которые образуются сзади устоев моста; воронки в воде реки и т.д.
Распределение скорости v по сечению трубы; элементарные объёмы вращаются, как показано стрелками.
Рис.1
Во всякой вязкой жидкости действуют силы трения, в результате которых вихри меняют свою интенсивность — постепенно затухают. Т. к. вода и особенно воздух имеют малую вязкость, то в них вихри могут сохраняться довольно долгое время; например, смерчи иногда перемещаются на большие расстояния. В среде, лишённой вязкости (идеальная жидкость), вихри не могли бы ни появляться вновь, ни затухать. В средах с малой вязкостью (вода, воздух) В. д. возникает в тех частях течения, где сила вязкости всего сильнее проявляется, — в слое вблизи поверхности обтекаемого тела, в так называемом пограничном слое, заполненном сильно завихренной средой. Вихри пограничного слоя сбегают с поверхности обтекаемого тела и создают за этим телом след в форме тех или иных образований (вихревых слоёв или вихревых дорожек). Вихри, возникающие при движении тела в среде, определяют значительную часть подъёмной силы и силы лобового сопротивления, действующих на него. Поэтому изучение В. д. имеет большое значение для расчёта и конструирования крыльев самолётов, воздушных винтов, лопаток турбин и т.д.
Реализации эффекта
Исследуя циклические сепараторы для очистки газа от пыли, французский инженер-металлург Ж. Ранке в конце 20-х годов XX века обнаружил необычное явление: в центре струи газ, выходящий из циклона, имел более низкую температуру, чем исходный. Уже в конце 1931 г. Ранке получает первый патент на устройство, названное им "вихревой трубой", в котором осуществляется разделение потока сжатого воздуха на два потока - холодный и горячий. Вскоре патентует это изобретение и в других странах. В 1933 г. Ранке делает доклад во Французском физическом обществе об открытом им явлении разделения сжатого газа в вихревой трубке. Но научной общественностью его сообщение было встречено с недоверием, так как никто не мог объяснить физику этого процесса. Ведь ученые еще совсем незадолго до того поняли неосуществимость фантастической идеи "демона Максвелла", который для разделения теплого газа на горячий и холодный должен был выпускать через микроотверстие из сосуда с газом быстрые молекулы газа и не выпускать медленные. Все решили, что это противоречит второму началу термодинамики и закону возрастания энтропии.
Вихревая труба Ранке
Рис.1
Литература
1. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.
2. М.Я.Алферьев «Гидромеханика», издательство «Речной транспорт», М., 1961, с.110-111