Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Сверхдальнее распространение радиоволн
Сверхдальнее распространение радиоволн

Описание

 

 
Сверхдальнее распространение радиоволн - распространение радиоволн на расстояния, существенно превышающие протяжённость стандартных линий радиосвязи(>10000 км). Реализуется при благоприятном пространственном распределении электронной концентрации Ne и эффективной частоты соударений v над землёй на уровне ~70 ~ 400 км,: определяющих, совместно с рабочей частотой основные свойства показателя преломления земной атмосферы и формирующих такой волновой канал, который обеспечивает наименьшее затухание в точке приёма.Представление о предельно достижимой дальности менялось с накоплением экспериментальных фактов, развитием приёмно-передающих комплексов и теории распространения электромагнитных волн. Первые опыты Г. Маркоии (G. Marconi) по трансатлантической связи (1901) продемонстрировали неожиданно высокую, напряжённость поля и привели А. Кеннелли (A. Keunelly) и О. Хевисайда (О. Heaviaide) к гипотезе о существовании ионосферы, отражающей радиоволны обратно к Земле.
Как известно, основой распространения радиоволн длинноволнового и средневолнового диапазонов является земная волна, которая характеризуется тем, что энергия электромагнитного поля огибает земную поверхность за счет преломления в атмосфере. Это преломление происходит благодаря уменьшению плотности воздуха с высотой. Радиоволны коротковолнового диапазона слабо преломляются в атмосфере, но способны отражаться от верхних ионизированных ее слоев.
Долгое время считалось, что радиоволны метрового диапазона не огибают поверхность земли (не подвержены рефракции) и не отражаются ионосферой. Это, однако, оказалось не так. Степень ионизации слоев ионосферы резко возрастает в годы солнечной активности, а также и по другим причинам. Это приводит к образованию условий, способствующих отражению волн метрового диапазона.
Дальнее распространение коротких волн (KB) вокруг Земли возможно лишь благодаря тому, что она окружена ионосферой - электронно-ионной плазмой, отражающей волны. Она начинается на высоте h = 50-60 км в слое С и имеет максимум электронной концентрации Nmax на высотах h = 200-400 км в слое F (см. рис.1). Вне полярных областей все слои, кроме С*, порождены и в значительной мере контролируются коротковолновым излучением Солнца. В полярных областях оказывает влияние и корпускулярное излучение Солнца, проникающее через магнитосферу. Ионосфера имеет сложное планетарное распределение и изменяется в течение суток, сезона и 11-летнего периода солнечной активности. Кроме того, она испытывает кратко временные повышения концентрации в нижних слоях во время вспышек ультрафиолетового излучения Солнца и ионосферные бури, вызываемые всплесками корпускулярного излучения Солнца.
рис.1
Сверхдальнее распространение волн вокруг земли
В первом приближении ионосферу можно рассматривать как диэлектрик с потерями и диэлектрической проницаемостью ε = (1-8)e-5 N/f2, т. е. зависящей от частоты волны f (в МГц) и концентрации электронов N (в см-3).
Таким образом, KB распространяются в слоистой диэлектрической среде с коэффициентом преломления n = (ε)1/2, падающим с высотой h по мере роста N до Nmax в слое F. При fкр=9*e-3(Nmax)1/2 на некоторой высоте, меньшей hm,диэлектрическая проницаемость e становится отрицательной. Это означает, что луч КВ, падающий на ионосферу вертикально снизу, после полного отражения возвращается на Землю. При f>fкр луч пробивает ионосферу и уходит в космос.
Чем больше частота волны, тем более высокая концентрация электронов требуется для того, чтобы за счет преломления и полного внутреннего отражения волна вернулась на Землю. Кроме того, доказано, что в точке отражения волны электронная концентрация обязательно должна возрастать с высотой. Отражение не может происходить в области максимума и тем более в области уменьшения электронной концентрации с высотой. Непостоянство электронной концентрации в ионизированных слоях, ее изменения в течение года и в течение суток, приводят к тому, что условия достаточного преломления и полного внутреннего отражения, необходимые для возврата радиоволн на землю, возникают также случайно, длятся кратковременно и не прогнозируются.
Согласно законам преломления луч, падающий на преломляющую поверхность нормально (под прямым углом), не преломляется. Чем более полого падает луч на преломляющую поверхность, тем больше вероятность того, что будут достигнуты условия для полного внутреннего отражения, тем меньшая электронная концентрация для этого потребуется. Поэтому сверхдальний прием наблюдается только на больших расстояниях (около 1000 км и более) от телевизионного, а меньшие расстояния для сверхдальнего приема образуют мертвую зону.
Наиболее благоприятные условия для сверхдальнего прохождения на KB возникают, когда трасса связи проходит вблизи терминатора (границы света и тени на поверхности Земли), а точнее — вдоль вечернего сумеречного и утреннего послевосходного поясов. На всем протяжении таких поясов имеется достаточно высокий уровень электронной концентрации с равномерным ее распределением в области ионосферы. Это обуславливает существование вокруг Земли кольцевого канала, который может обеспечивать связь в широком диапазоне частот при относительно небольшом затухании сигнала. Положение терминатора определяется не только временем суток, но и временем года. В равнодействие он проходит через Северный и Южный полюса, и наилучшие условия для сверхдальнего распространения КВ, вплоть до кругосветного, будут в меридиональном направлении.
В диапазонах KB нередко наблюдается сверхдальнее распространение радиоволн, характеризующееся сравнительно малым затуханием сигнала. Это явление давно интересует ученых, но некоторые его закономерности достаточно хорошо еще не изучены. Малое затухание сигнала, в частности, связывают с распространением радиоволн в ионосферных волноводных каналах или, в общем случае, с их распространением без промежуточных отражений от Земли.
 

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Сверхдальнее распространение радиволн используется для теле- и радио передачи информации. Однако, широкому применению препятствует случайный характер возникновения условий для их прохождения . Сверхдальний прием телевизионных передач наблюдается сравнительно редко, сеансы его непродолжительны и не поддаются прогнозированию.

 

Реализации эффекта

Основная особенность дальнего приема телевизионного сигнала состоит в низком уровне напряженности поля принимаемого сигнала из-за большого расстояния между передающей и приемной антеннами в дальней части зоны прямой видимости и из-за затенения поверхностью земли за границей зоны прямой видимости – в зоне полутени. По мере удаления от передатчика напряженность поля монотонно уменьшается, но в зоне полутени это уменьшение становится более резким. В зоне прямой видимости увеличение расстояния от передатчика сопровождается уменьшением плотности потока мощности сигнала (уменьшается густота силовых линий поля) просто хотя бы потому, что увеличивается длина окружности с увеличением ее радиуса. За границей зоны прямой видимости напряженность поля определяется почти исключительно дифракцией и нормальной рефракцией радиоволн.
Другая особенность дальнего приема заключается в наличии помех от других телевизионных передатчиков, работающих на том же или на соседнем частотном канале. Для ослабления таких помех действующими нормами установлены минимальные расстояния между передатчиками: около 500 км между передатчиками, работающими на одинаковых каналах, и около 300 км между передатчиками, работающими на соседних по частоте каналах. Тем не менее в условиях дальнего приема такие помехи имеют место и приходится использовать специальные меры для их ослабления.
В условиях дальнего приема сильное влияние на уровень напряженности поля оказывает погода. В случае тумана, дождя или снега резко увеличивается поглощение энергии сигнала в пространстве, особенно в диапазоне дециметровых волн, и прием иногда вообще становится невозможен.
Низкий уровень напряженности поля сигнала в условиях дальнего приема телевизионных передач диктует необходимость установки высокоэффективной антенны с большим коэффициентом усиления, так как напряжение принимаемого сигнала на выходе антенны определяется произведением напряженности поля на коэффициент усиления антенны. В связи с тем, что радиус зоны прямой видимости определяется высотой расположения приемной антенны, в дальней части зоны прямой видимости и в зоне полутени напряженность поля в точке приема зависит от высоты расположения антенны, причем зависимость эта оказывается примерно пропорциональной: при увеличении высоты антенной мачты вдвое напряженность поля также увеличивается в 2 раза. Поэтому всегда целесообразно использовать антенную мачту максимально возможной высоты. Установка приемной антенны с большим коэффициентом усиления на высокой мачте обеспечит увеличение напряжения сигнала на выходе антенны как при устойчивом уровне напряженности поля, так и в условиях замираний.
 

 

Литература

1. Прохоров А.М. Физическая энциклопедия,М.: Большая Российская энциклопедия. Т.4., 1994. 704 с., ил.

2. Краснушкин П. О дальнем и сверхдальнем распространении коротких волн РАДИО № 3. 1982 г.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина