Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Тушение люминесценции
Тушение люминесценции

Анимация

Описание

 
Тушение люминесценции – уменьшение выхода люминесценции, вызываемое различными причинами. Тушение люминесценции может происходить при добавлении в люминофор посторонних примесей, при увеличении в нём концентрации самого люминесцирующего вещества (концентрационное тушение), при нагревании, под действием инфракрасного света, электрического поля и др. воздействий на люминесцирующее вещество.
В результате действия этих факторов относительно возрастает вероятность безызлучательных переходов люминесцирующих молекул из возбуждённого состояния в основное по сравнению с вероятностью их излучательных переходов. В случае рекомбинационной люминесценции кристаллофосфоров тушение люминесценции объясняется безызлучательной рекомбинацией носителей заряда с центрами тушения, которыми могут служить дефекты кристаллической решётки или атомы примеси.
Отличие выхода люминесценции от единицы обусловлено такими процессами тушения – различают концентрационное, внутреннее, температурное, внешнее статическое и динамическое тушение.
- Внутреннее тушение обусловлено безызлучательными переходами внутренней конверсии и колебательной релаксации. Наиболее ярко оно проявляется в симметричных структурах с большим числом сопряженных связей, конформационно нежёстких структурах.
- Температурное тушение является разновидностью внутреннего. Под влиянием температуры способность молекулы деформироваться растёт, и, как следствие, растёт вероятность безызлучательных переходов.
- Внешнее статическое тушение основано на взаимодействии люминесцирующего соединения с другой молекулой и образованием неизлучающего продукта.
- Динамическое тушение наблюдается, когда возбуждённая молекула люминофора вступает в постороннюю реакцию и теряет свои свойства.
Концентрационное тушение – результат поглощения молекулами вещества собственного излучения.
В широком смысле слова под тушением возбужденных состояний понимают любые процессы их дезактивации, являющиеся результатом взаимодействия возбужденных молекул с компонентами системы. Выход люминесценции очень чувствителен к различным внутримолекулярным и межмолекулярным взаимодействиям, которые вызывают его уменьшение и приводят к развитию процессов тушения люминесценции. К числу наиболее активных тушителей люминесценции относятся:
- тяжелые анионы и катионы I , Br , Cs+ , Cu2+ (при этом облегчается S1 → T1 переход);
- парамагнитные ионы и молекулы   O2, Mn2+ , нитроксильные радикалы;
- молекулы растворителя. Наибольшим тушащим действием обладают обычно полярные растворители, такие, как вода;
- акцепторы электронной энергии возбуждения.
Согласно С. И. Вавилову, тушитель может быть статическим (тушение первого рода) и динамическим (тушение второго рода).
Тушение первого рода. К тушению первого рода были отнесены все те процессы, в которых уменьшение выхода люминесценции не сопровождается уменьшением средней длительности возбуждённого состояния. Тушение первого рода вызывается быстрыми химическими или физико-химическими процессами в возбужденных молекулах исследуемого вещества. В этом случае часть энергии света, поглощенного молекулами, расходуется на их диссоциацию, ионизацию или на увеличение энергии их колебания и вращения. Такие процессы развиваются с большой скоростью и происходят за время, соизмеримое со временем собственных колебаний молекул (~10-13÷10-14 с), что значительно меньше времени жизни молекул в возбуждённом состоянии, 10-9 с. Статическое тушение связано также с образованием нефлуоресцирующих комплексов НК флуоресцирующих молекул Ф с молекулами тушителя Q:
. (1)
Отношение концентраций свободного флуоресцирующего и связанного нефлуоресцирующего вещества [Ф]/[HK] может быть найдено из уравнения равновесия
, (2)
где ДК - константа диссоциации комплекса. Если поглощение вещества Ф и комплекса не различаются, то отношение квантовых выходов люминесценции вещества Ф в присутствии и отсутствии комплекса будет равно
. (3)
Используя предыдущее уравнение, получаем:
. (4)
Если поглощение комплекса отлично от поглощения флуоресцирующего вещества, то уравнение (3) не соблюдается. Однако при низких оптических плотностях растворов будет справедливо отношение
. (5)
Частным случаем статического тушения является так называемое концентрационное тушение, которое связано с образованием нефлуоресцирующих димеров и более крупных ассоциатов молекул при высокой концентрации флуоресцирующего вещества:
(не флуоресцирует). (6)
В этом случае димеризация может сопровождаться деформацией электронного спектра поглощения молекул растворенного вещества.
Концентрационное тушение является обратимым процессом — выход свечения полностью восстанавливается при разбавлении концентрированного раствора.
Тушение второго рода. К тушению второго рода были отнесены все те процессы, в которых уменьшение выхода люминесценции вызывается воздействием на возбужденные молекулы исследуемого вещества за времена, соизмеримые со временем жизни возбуждённого состояния. В этом случае происходит безызлучательная дезактивация возбужденных молекул, которая развивается либо вследствие передачи энергии от возбужденных молекул к невозбужденным, либо благодаря переходу энергии возбуждения в энергию колебания ядер, либо из-за протекания химических реакций с участием возбужденных молекул.
Вследствие того, что при тушении первого рода все воздействия осуществляются на невозбужденные молекулы, то это никак не может сказаться на величине τ, так как в возбужденное состояние переходят лишь те молекулы, которые избежали этих воздействий. Напротив, в случае тушения второго рода во всех взаимодействиях принимают участие возбужденные молекулы. Поэтому при развитии тушения такого вида значение τ должно существенно изменяться, т.е. постоянство τ или его изменения являются надежным критерием, позволяющим однозначно установить природу тушения. В случае тушения второго рода, при экспоненциальном законе затухания свечения и экспоненциальном ходе тушения люминесценции, выполняется важное соотношение между выходом свечения и средней длительностью возбужденного состояния исследуемых молекул:
, (7)
где γ0 γ, а также τ0 и τ—соответственно выход люминесценции и средняя длительность возбужденного состояния молекул в случае отсутствия и при наличии тушения. Таким образом, при выполнении указанных условий между выходом люминесценции и τ должна осуществляться пропорциональная зависимость. В ряде случаев это соотношение хорошо выполняется на опыте.

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Факторы, стимулирующие люминесценцию, при определенных условиях могут дать обратный эффект, т.е. уменьшить интенсивность свечения или совсем прекратить его. Это явление называют уменьшением люминесценции.
Повышение температуры, изменение влажности, ИК-облучение, электрическое поле, изменение внешнего давления, наличие некоторых газов – все эти факторы могут привести к тушению люминесценции.
Так, например, присутствие кислорода, бензохинона или йода уменьшает интенсивность фотолюминесценции, в тоже время как присутствие молекул воды увеличивает ее. Наличие электрического поля, перпендикулярного поверхности люминофора, тушит радикалолюминесценцию, изменение же направления поля на обратное – усиливает свечение.
Обычно Тушение люминесценции нежелательно, поэтому к чистоте люминесцирующих веществ предъявляются очень высокие требования. Однако специальные виды люминофоров, в которых происходит быстрое Тушение люминесценции при повышении температуры или под действием инфракрасного излучения, применяются в качестве чувствительных индикаторов длинноволновых излучений

Реализации эффекта

Люминофоры (от лат. lumen – свет и греч. phoros – несущий) – вещества, способные преобразовывать поглощаемую ими энергию в световое излучение (люминесцировать). По химической природе люминофоры разделяются на неорганические, большинство из которых относится к кригаллофосфорам, и органические.
Свечение неорганических люминофоров (кристаллофосфоров) обусловлено в большинстве случаев присутствием посторонних катионов, содержащихся в малых количествах (до 0,001%). Такие примеси (активаторы) обычно являются катионами металлов; например, свечение сульфида цинка активируется катионом меди. Неорганические люминофоры применяют в люминесцентных лампах, электронно-лучевых трубках, для изготовления рентгеновских экранов, служат индикаторами радиации и др. Органические люминофоры (люмогены) используют в чувствительном люминесцентном анализе в химии, биологии, медицине и криминалистике.

Люминесценция – свечение вещества, происходящее после поглощения им энергии возбуждения.
Впервые люминесценция была описана в XVIII веке. Особого внимания люминесценция не привлекала вплоть до 1948 года, когда советский учёный С.И.Вавилов не предложил использовать люминесценцию в анализе химических веществ. В быту явление люминесценции используется, главным образом, в люминесцентных лампах и электронно-лучевых трубках кинескопов.
“Будем называть люминесценцией избыток над температурным излучением тела в том случае, если это избыточное излучение обладает конечной длительностью примерно 10-13 секунд и больше”. Таково каноническое определение люминесценции, данное русским учёным С.И. Вавиловым в 1948 году.
Первая часть определения позволяет отличить люминесценцию от теплового излучения, что особенно важно при высоких температурах, когда термоизлучение приобретает большую интенсивность. Важной особенностью люминесценции является то, что она способна проявляться при значительно более низких температурах, так как не использует тепловую энергию излучающей системы. За это люминесценцию часто называют “холодным свечением”. Критерий длительности, введённый Вавиловым, позволяет отделить люминесценцию от других видов нетеплового излучения: рассеяния и отражения света, комбинационного рассеяния, излучения Черенкова. Длительность их меньше периода колебания световой волны (то есть <10-13 c).
Физическая природа люминесценции состоит в излучательных переходах электронов из возбуждённого состояния в основное. При этом причиной первоначального возбуждения системы могут служить различные факторы: внешнее излучение, химические реакции и др.
Вещества, имеющие делокализованные электроны (сопряжённые системы), обладают самой сильной люминесценцией. Антрацен, нафталин, все белки, нуклеиновые кислоты, многие лекарственные препараты также обладают ярко выраженной способностью к люминесценции. Органические вещества, способные давать люминесцирующие комплексы со слабо люминесцентными неорганическими соединениями, часто используются в люминесцентном анализе.
Яркость люминесценции кристаллов зависит от наличия в них примесей (так называемых активаторов), энергетические уровни которых могут служить уровнями поглощения, промежуточными или излучательными уровнями. Роль этих уровней могут выполнять также энергетические зоны (валентная и проводимости). Кристаллы, обладающие люминесценцией, называются кристаллофосфорами.
В кристаллофосфорах возбуждение светом, электрическим током или пучком частиц создаёт свободные электроны, дырки и эксптоны. Электроны могут мигрировать по решётке, оседая на ловушках.
Основные физические характеристики люминесценции:
- способ возбуждения (для фотолюминесценции – спектр возбуждения);
- спектр излучения (изучение спектров излучения люминесценции составляет часть спектроскопии);
- состояние поляризации излучения;
- выход излучения, то есть отношение поглощённой энергии к излученной (для фотолюминесценции вводится понятие квантового выхода люминесценции – отношения числа излученных квантов к числу поглощённых).
Поляризация люминесценции связана с ориентацией и мультипольностью излучающих и поглощающих атомных систем.
Кинетика люминесценции, то есть зависимость свечения от времени, интенсивности излучения; от интенсивности возбуждения, а также зависимость люминесценции от различных факторов (например, температуры) служит важной характеристикой люминесценции. Кинетика люминесценции в сильной степени зависит от элементарного процесса.
При большой плотности возбуждения наблюдается отклонение от экспоненциального закона затухания, вызванное процессами вынужденного излучения. Квантовый выход резонансной люминесценции обычно близок к 1. Кинетика затухания спонтанной люминесценции также обычно носит экспоненциальный характер. Кинетика рекомбинационной люминесценции сложна и определяется вероятностями рекомбинации, захвата и освобождения электронов ловушками, зависящими от температуры.
Время затухания люминесценции изменяется в широких пределах – от 10-8 сек до нескольких часов. Если происходят процессы тушения, то сокращаются выход люминесценции и время её затухания. Исследование кинетики тушения люминесценции даёт важные сведения о процессах взаимодействия молекул и миграции энергии.
Изучение спектра, кинетики и поляризации излучения люминесценции позволяет исследовать спектр энергетического состояния вещества, пространственную структуру молекул, процессы миграции энергии. Для исследования люминесценции применяются приборы, регистрирующие свечение и его распределение по спектру, – спектрофотометры. Для измерения времён затухания применяются тауметры и флуорометры.
Люминесцентные методы являются одними из наиболее важных в физике твёрдого тела. Люминесценция некоторых веществ лежит в основе действия лазеров. Люминесценция ряда биологических объектов позволила получить информацию о процессах, происходящих в клетках на молекулярном уровне (Биолюминесценция). Для исследования кристаллофосфоров весьма плодотворно параллельное изучение их люминесценции и проводимости. Широкое исследование люминесценции обусловлено также важностью её практических применений. Яркость люминесценции и её высокий энергетический выход позволили создать люминесцентные источники света с высоким КПД, основанные на электролюминесценции и фотолюминесценции (Люминесцентная лампа).
Яркая люминесценция ряда веществ обусловила развитие метода обнаружения малых количеств примесей, сортировки веществ по их люминесцентным признакам и изучение смесей, например нефти (Люминесцентный анализ).
Катодолюминесценция лежит в основе свечения экранов электронных приборов (осциллографов, телевизоров, локаторов и так далее), в рентгеноскопии используется рентгенолюминесценция. Для ядерной физики очень важным оказалось использование радиолюминесценции (Люминесцентная камера, Сцинтилляционный счётчик). Люминесценция широко применяется для киносъёмки и в дефектоскопии (Люминесцентная киносъёмка, Дефектоскопия). Люминесцентными красками окрашивают ткани, дорожные знаки и так далее.
На рисунке 1 приведена схема квантовых переходов при элементарном процессе люминесценции
 
Схема квантовых переходов при элементарном процессе люминесценции
Рис 1
1 – основной энергетический уровень; 2 – уровень излучения; 3 – уровень возбуждения.
Переход 3–1, показанный пунктирной стрелкой, соответствует резонансной люминесценции, переход 2–1 – спонтанной люминесценции.
Для перехода с метастабильного уровня 4 на излучающий уровень 2 атом должен поглотить дополнительную энергию (как показано на рисунке 2).
 
Схема квантовых переходов при метастабильной (стимулированной) люминесценции

Рис 2
На рисунке 3 приведена схема энергетических переходов при люминесценции кристаллофосфоров.
Схема энергетических переходов при люминесценции кристаллофосфоров

Рис 3
Переход 1–3 соответствует поглощению энергии, переходы 3–4 и 4–3 – захвату и освобождению электрона метастабильным уровнем (ловушкой 4). Переход (а) соответствует межзонной люминесценции, (б) – люминесценции центра, (в) – экситонной люминесценции (2 – уровень энергии экситона).

Литература

1. Лакович Дж. Основы флуоресцентной спектроскопии. — М.: Мир, 1986. — 496 с.

2. David Harvey Modern Analytical Chemistry. — Boston, 2000. — 798 p.

3. Столяров К. П., Григорьев Н. Н. Введение в люминесцентный анализ неорганических веществ. — Л., 1967. — 364 с.

4. Захаров И. А., Тимофеев В. Н. Люминесцентные методы анализа. — Л., 1978. — 95 с.

5. Сизых А.Г., Слюсарева Е.А. Тушение люминесценции в жидких растворах:Метод. указания / Краснояр. гос. ун-т .- Красноярск, 2003. – 26 с.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина