Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Сверхизлучение
Сверхизлучение

Описание


Сверхизлучение - это спонтанное излучение системы возбужденных идентичных атомов или молекул. Сверхизлучение можно использовать для генерации ультракоротких импульсов электромагнитного излучения в широком диапазоне длин волн - от радиоволн до гамма-излучения.
Представим себе объем, содержащий молекулы, которые обладают системой дискретных энергетических уровней, на которых располагаются электроны. Те электроны, которые "населяют" некоторый уровень 1 с энергией E1, могут самопроизвольно (как говорят, спонтанно) перейти на более низкий уровень 2 с энергией E2, излучив при этом фотон с частотой перехода
где h— постоянная Планка. Если на молекулу падает излучение, то она может поглотить фотон с той же частотой ω0. При этом электрон с нижнего уровня 2 перейдет на верхний уровень 1, забрав энергию поглощенного фотона. Число поглощенных фотонов растет пропорционально числу электронов на нижнем уровне 2 (населенности этого уровня). Наряду с процессом поглощения существует указанное еще А. Эйнштейном своеобразное явление индуцированного излучения, когда окружающее молекулу излучение не поглощается, а вызывает в дополнение к спонтанным еще и вынужденные переходы электронов с верхнего уровня на нижний 1 - 2. Появляющиеся при такого рода переходах фотоны добавляются к окружающему излучению. Вероятность индуцированных процессов пропорциональна плотности энергии этого излучения, а число излученных фотонов — произведению плотности энергии излучения на населенность верхнего состояния 1.
Из изложенного ясно, что происходит с системой молекул в том случае, если имеет место "инверсия населенностей", то есть число электронов (населенность) N1, превышает населенность N2. В этом случае число поглощенных фотонов будет меньше, чем число испущенных за счет индуцированных переходов. В результате интенсивность излучения будет возрастать и быстро превысит тот довольно низкий уровень, который может быть создан за счет сравнительно редких спонтанных переходов. Интенсивное излучение из системы с инверсией населенностей и составляет существо мазерного эффекта, именно такие системы молекул или твердые тела и составляют "сердце" мазеров и лазеров.
Однако мазерный эффект — это не единственный эффект, который может реализоваться в инвертированных системах. Оказалось, что существует еще одно явление — сверхизлучение, которое также использует свойства, заложенные в таких системах. На возможность существования сверхизлучения указал Р. Дике в 1954 году. Эксперименты, в которых было обнаружено это явление, начались много позже, в 1973 году.
Схема эксперимента по наблюдению эффекта сверхизлучения
 
Рис. 1.

Схема экспериментальной установки была очень простой (рис. 1). Полый цилиндр (кювета) был заполнен газом — фтористым водородом HF. На этот цилиндр поступало излучение (накачка) от лазера на длине волны λ = 2,5 мкм. На выходе из кюветы располагался фильтр, задерживающий импульс накачки. После него был установлен детектор, фиксирующий уровень излучения из кюветы в далеком инфракрасном диапазоне. Именно на переходах 1 - 2 в этом диапазоне создавалась инверсия населенностей в газе HF. Эта инверсия возникала за счет энергии мощного импульса накачки, который забрасывал электроны на уровень 1 с некоторого уровня 3. расположенного ниже уровня 2.

Возможные режимы излучения инвертированной системы молекул: а - спонтанное излучение; б- мазерный эффект; в - сверхизлучение
 
Рис. 2.

Что можно было ожидать на выходе из кюветы после окончания импульса накачки? Во-первых, это может быть только спонтанное излучение электронов при переходе1 - 2 (рис. 2, а). Его интенсивность должна постепенно убывать с характерным временем T1, по мере уменьшения числа электронов на уровне 1. Направленность излучения должна отсутствовать. Во-вторых, возможна реализация мазерного эффекта с направленным вдоль цилиндра мощным и более кратковременным излучением (рис. 2. б). Это излучение сначала возрастает по закону

где t - время, Q0 - начальное значение мощности излучения, а γ — так называемый инкремент, а затем по мере уменьшения разности населенностей ΔN= N1 - N2 начинает убывать. Излучение практически прекращается, когда населенности выравниваются: N1= N2. Точнее, после этого убыль населенности N1 определяется в основном спонтанными процессами. Надо отметить, что переход в режим генерации интенсивного излучения становится возможным, если излучение (по крайней мере частично) задерживается в системе, а не уходит беспрепятственно из нее. Последнее достигается тем, что стенки кюветы делаются полупрозрачными (зеркальными) с некоторым коэффициентом отражения R > 0. В этом случае условие генерации имеет вид
(с — скорость света, L — длина образца). Если все электроны под действием импульса накачки были заброшены на верхний уровень (N1 = N, N2 = 0), то энергия, и злученная в результате мазерного эффекта, будет, очевидно, равна
где V— объем образца. Коэффициент 2 в знаменателе отражает тот факт, что действие мазерного эффекта прекращается, как только половина всех электронов перейдет на нижний уровень и населенности N1 и N2 сравняются. Заметим, что длительность импульса в этом случае сравнима со временем пробега фотонов по образцу t= L/c. причем это время много больше характерного времени упругих столкновений молекул в газе T2.
И наконец, возможен третий режим — сверхизлучение (СИ). В этом случае после длительной задержки в течение времени Т3 >> L/с возникает короткий мощный импульс (рис. 2, в). Его длительность t<<td, Т2, а энергия равна всей энергии, запасенной в системе: hωVN. Излучение отличается высокой направленностью, его мощность Q ~ N2. Последнее означает, что сверхизлучение обладает высокой степенью когерентности: все молекулы излучают "в фазе", то есть при сложении электрического Е и магнитного В полей в электромагнитном излучении суммарное поле пропорционально их полному числу излучающих молекул VN. Мощность излучения, которая пропорциональна векторному произведению Е х В, в этом случае зависит от N по квадратичному закону.
СИ исследуют в физических лабораториях экспериментально и теоретически. Однако пока оно не нашло применения в технике, как это произошло с лазерами и мазерами. И причина заключается прежде всего в том, что реализовать сверхизлучательный режим значительно сложнее, чем мазерный. Этот режим возникает лишь при условии
,
что становится возможным только в случае высокой концентрации инвертированных молекул 1 и низкой частоты упругих соударений 1/Т2. Как уже упоминалось, длительность импульса СИ много меньше времени упругих соударений. Это вполне естественно, так как упругие соударения излучающих молекул нарушают когерентный характер их излучения. Отметим, что мазерный эффект возникает при выполнении противоположного неравенства γТ2 << 1. Таким образом, сверхизлучение и мазерный эффект представляют собой два предельных случая генерации излучения в инвертированных системах.
Ценность эффекта СИ заключается фактически в двух обстоятельствах:
1) он может обеспечить высокую мощность при малой длительности импульса;
2) для реализации СИ не нужны хорошие зеркала (достаточно получить отражение с коэффициентом R << 1). Последнее представляется весьма важным для решения проблемы мощных источников излучения в рентгеновских и гамма-лучах, для которых в настоящее время практически невозможно изготовить зеркала с высоким коэффициентом отражения.

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

С чем вообще связан интерес к сверхизлучению? Прежде всего с использованием его для получения ультракоротких мощных импульсов электромагнитного излучения. Если стремиться создать импульс, длительность которого была бы меньше обратной ширины спектральной линии, то это окажется возможным только в режиме сверхизлучения.
В 1973 году появилось первое сообщение об экспериментальном обнаружении сверхизлучения в лаборатории Массачусетского технологического института (США). Оно наблюдалось в инфракрасной области спектра и было обусловлено кооперативным спонтанным переходом между вращательными подуровнями молекулы HF. Энергетическое расстояние между этими подуровнями соответствовало длине волны порядка 100 мкм. Вероятность обычного спонтанного перехода между вращательными подуровнями имеет порядок величины 1 с, и поэтому его интенсивность настолько мала, что практически наблюдать его невозможно. Однако при интенсивной импульсной накачке в этом эксперименте возникал импульс сверхизлучения длительностью 100 нс (10- 7 c). Излучение имело выраженную направленность (в отличие от изотропного спонтанного излучения) и по интенсивности превышало последнее на десять порядков. Авторы также показали, что пиковая интенсивность зарегистрированного ими излучения была пропорциональна квадрату числа возбужденных атомов - характерная черта сверхизлучения. Затем последовали эксперименты, в которых сверхизлучение наблюдалось также в разреженных газах, но уже при переходах между электронными уровнями в атомах. Они относились к инфракрасной области спектра, а длительности импульсов сверхизлучения имели порядок нескольких наносекунд (1 нс = 10- 9с).
В 80-х годах сверхизлучение было обнаружено в твердых телах – примесных кристаллах в оптическом диапазоне частот. Примесные кристаллы – это кристаллы, содержащие инородные атомы или молекулы, играющие роль центров свечения, или, как говорят, центров люминесценции. Спектры излучения этих центров содержат очень узкие линии, ширина которых при низких температурах приближается к радиационной. Это так называемые бесфононные линии, которым посвящена статья. Мы помним, что узость спектральной линии и связанное с этим большое время фазовой памяти квантового состояния многоатомной системы являются главным условием для наблюдения сверхизлучения.
Сообщалось, что сверхизлучение наблюдается в кристалле хлористого калия, содержащего в качестве примеси молекулярные ионы кислорода, при температуре ниже 30 К и достаточно мощной импульсной накачке, создающей плотность инверсии N0 = 1016-1017 см-3 (для сравнения плотность инверсии в газах составляла 1011-1013 см-3). Соответственно импульс сверхизлучения оказывался более коротким и лежал уже в пикосекундном диапазоне (1 пс = 10-12 с), то есть был в тысячу раз короче, чем в газах. Следует заметить, что ширина бесфононной линии оказалась в этих опытах значительно больше радиационной, в частности из-за неоднородного уширения. Это приводило к потере фазовой памяти в процессе высвечивания, удлинению импульса и уменьшению его интенсивности.
Сверхизлучение наблюдалось и в радиочастотном диапазоне длин волн/ Это были эксперименты, родственные ядерному магнитному резонансу (ЯМР). Известно, что во внешнем магнитном поле спиновый магнитный момент протона имеет два стационарных состояния и соответственно два уровня энергии. В основном состоянии магнитный момент направлен по внешнему магнитному полю, в возбужденном состоянии - против магнитного поля. Практически нет, поскольку его вероятность, которая может быть оценена по теории Дирака, имеет порядок 10-25 с-1 и, следовательно, характерное время распада составляет более чем астрономическую величину 1025 с. Но на самом деле условия наблюдения сверхизлучения являются еще более благоприятными. Было показано, что сверхизлучение в системе ядерных спинов можно наблюдать, только если она находится в высокодобротном резонаторе. Таким образом, длительность импульса сверхизлучения в такой системе будет порядка миллисекунд.
Давно обсуждается вопрос о возможности наблюдения сверхизлучения на ядерных переходах, то есть в гамма- диапазоне частот электромагнитного излучения. Получены теоретические оценки параметров таких систем и выбраны возможные типы ядерных сиситем и размеры кристалла, содержащие в необходимой концентрации радиоактивные ядра.
Принципиальную трудность представляет осуществление короткой накачки, создающей инверсию.
Существует явление, в некотором смысле противоположное сверхизлучению и получившее название субизлучение. Этот факт связан с возможностью создания таких когерентных многоатомных состояний, излучение из которых запрещено. Такие состояния уже наблюдались экспериментально. Вопрос в том, как искусственно создать такие состояния и как переключать субизлучательный канал на сверхизлучательный, чтобы запасенная в системе энергия могла быть преобразована в энергию сверхкороткого импульса электромагнитного излучения. Одна из идей заключается в использовании трехуровневой схемы переходов. Субизлучательное состояние по отношению к переходу между парой уровней может быть преобразовано в сверхизлучательное с помощью «подмешивания» к одному из одноатомных рабочих состояний третьего состояния с близким энергетическим уровнем. Причем это в принципе может быть осуществлено когерентным импульсом микроволнового диапазона. Таким образом, предлагается устройство, которое позволило бы управлять мощным электромагнитным излучением с помощью низкоэнергетического уровня.
Другим важным объектом приложения концепции сверхизлучения является лазер на свободных электронах. Лазер на свободных электронах (или ондулятор) представляет собой устройство, в котором поток электронов движущихся со скоростью, близкой к скорости света, приходит через пространственно-периодическое магнитное поле. Под влиянием силы Лоренца электроны испытывают ускорение в поперечном направлении и поэтому излучают электромагнитные волны, сосредоточенные в узком конусе вдоль направления своего основного движения. Это поле, взаимодействуя с электронами, усиливает процесс излучения. Интенсивность выходящего излучения зависит от соотношения фаз колебаний поля и электронов. В режиме высокого усиления взаимодействие электронов с собственным полем излучения приводит к корреляции фаз колебаний отдельных электронов. В результате интенсивность излучения будет пропорциональна не числу излучающих электронов, а квадрату этого числа. Хотя описанный процесс носит классический характер, была обнаружена математическая аналогия его теории с теорией квантового сверхизлучения, о котором рассказано выше.
Нет сомнения в том, что в дальнейшем появится новые области физики, в которой сверхизлучение будет обнаружено, и что оно найдет широкое практическое применение.

Реализации эффекта

Рассмотрим спонтанный переход атома из возбужденного состояния в основное. При этом один из радиационных осцилляторов увеличивает свое квантовое число на 1, то есть рождается один фотон электромагнитного поля. Сам атом в данном случае можно рассматривать как двухуровневую систему, у которой энергия основного состояния Еg, а энергия возбужденного состояния Ее. Тогда по закону сохранения энергии энергия фотона hvе- Еg.В рамках этой теории Дираком была вычислена вероятность спонтанного перехода е-g в единицу времени. Максимальное значение для атома имеет порядок величины 108 с-1.
Пусть в какой-то момент времени имеется N возбужденных атомов. Тогда (среднее) число атомов, которые за время dt испустят фотоны, будет
 (1)
Появление знака минус в этой формуле связано с тем, что dN выражает уменьшение числа возбужденных атомов и поэтому является отрицательной величиной. Решение дифференциального уравнения (1), определяющее число возбужденных атомов в момент времени t, имеет вид
(2)
где N(0) - число возбужденных атомов в начальный момент времени. Аналогичному экспоненциальному закону подчиняется и интенсивность спонтанного излучения
 (3)
Очевидно, что величина -t равна времени, в течение которого интенсивность излучения уменьшается в e раз.
Но если излучение имеет затухающий характер, то оно не может быть монохроматическим и ширина его спектра зависит от времени затухания. Именно величина равна ширине спектра и носит название радиационной, или естественной, ширины спектральной линии.
Экспоненциальный закон (3) справедлив с высокой степенью точности лишь при условии, что испускание фотонов атомами происходит независимо, то есть когда поле излучения одного из атомов не оказывает влияния на излучение других атомов. Это может быть в том случае, если система настолько разрежена, что фотон, испущенный одним атомом, покидает систему, не успев оказать влияния на процессы в других атомах. Существует еще один фактор, который может обеспечивать независимость спонтанного излучения атомами даже для достаточно плотной системы. Это прямое (не через поле излучения) взаимодействие атомов друг с другом (например, столкновения), носящее стохастический (то есть случайный) характер.
 

 

С помощью теории Дирака Дике показал, например, что для системы, состоящей из двух атомов, расстояние между которыми меньше длины волны излучения, вероятность спонтанного излучения в два раза больше чем для одного атома, это означает, что время спонтанного распада уменьшится в два раза по сравнению с обычным случаем, описываемым законом:
Это как раз и есть кооперативный эффект в спонтанном излучении. Он усиливается при увеличении числа атомов в системе. Для подобной системы из N возбужденных атомов происходит сокращение спонтанного распада в N раз, то есть время сверхизлучения t имеет порядок величины (N)-1 . Для наблюдения сверхизлучения необязательно, чтобы все атомы находились в возбужденном состоянии, но число атомов в возбужденном состоянии должно превышать число атомов в основном состоянии. Такое состояние всей системы называется инвертированным.
Но почему этот факт не был в то время обнаружен экспериментально? Имеется несколько причин. Описанный выше теоретический результат дает завышенную величину сокращения времени спонтанного распада. Дело в том, что рассматривать многоатомную систему в объеме с линейными размерами, меньшими длины волны излучения и при этом не учитывать прямого взаимодействия между атомами нельзя. А как мы уже отмечали, это взаимодействие приводит к дополнительному уширению спектральных линий. Обратную величину ширины спектральной линии называют временем фазовой памяти. Кооперативное спонтанное излучение может происходить только в течение времени сохранения фазовой памяти, пока атомная система находится в когерентном состоянии.
Если же рассматривать протяженную систему размеры которой превышают длины волны излучения, то кооперативный эффект в спонтанном излучении будет выражен слабее. Для протяженной системы излучение будет направлено вдоль наибольшей вытянутости образца. Следовательно в сверхизлучении будут принимать участие только те фотоны. Которые испускаются в пределах дифракционного телесного угла λ/D2, где λ  - длина волны излучения, D - поперечный размер системы. Поэтому фактором ослабления кооперативного эффекта является отношение этого дифракционного угла к полному телесному углу, и для протяженной системы имеем
,(1)
где N0 - концентрация возбужденных атомов, L - длина системы. Таким образом, для протяженной системы сокращение времени спонтанного излучения происходит не в N (как для малой системы), а в N` раз, где N` - число атомов, заключенных в объеме, имеющим протяженность образца, а поперечный размер равен длине волны излучения.
Если интенсивность обычного спонтанного излучения экспоненциально затухает с течением времени, то сверхизлучение, как это было сначала предсказано теоретически, а за тем подтверждено экспериментально, представляет собой интенсивный импульс, который возникает с некоторой задержкой после приготовления возбужденного состояния системы. При этом начальное значение интенсивности сверхизлучения равно, конечно, интенсивности обычного спонтанного излучения. Длительность основной части импульса сверхизлучения имеет порядок величины t. Как величина t, согласно (1), обратно пропорциональна концентрации возбужденных атомов N0, а полная энергия излучения пропорциональна N0, то пиковая интенсивность (то есть интенсивность в максимуме импульса) должна быть пропорциональна N02. Это одна из важных особенностей сверхизлучения. Фактически при сверхизлучении происходит синфазное сложение дипольных моментов излучающих атомов и возникает макроскопический дипольный момент, пропорциональный числу атомов. Как известно, интенсивность излучения пропорциональна квадрату дипольного момента, поэтому она оказывается пропорциональной N02.
Описанные выше свойства сверхизлучения имеют место лишь в том случае, если система не слишком протяженна: ее длина не должна превышать так называемую кооперативную длину, которая может быть приближенно определена из равенства длительности импульса сверхизлучения времени распространения света вдоль системы. Другим ограничением сокращения длительности оптического импульса является период собственных колебаний предельный случай приближения длительности импульса к периоду колебаний несущей волны представляет собой очень заманчивую, но пока не решенную задачу.

Литература

1. Dicke R.H. // Phys. Rev. 1954. V. 93. P. 99.

2. Skribanowitz N., Herman I.P., MacGillivray J.C., Feld M.S. // Phys. Rev. Lett. 1973. V.30 № 8. P.309.

3. Трифонов Е.Д. Оптический аналог эффекта Мёссбауэра // Соросовский Образовательный Журнал. 1996. № 11. С. 96-102

4. Florian R., Schwan L., Schmid D. // Phys. Rev.A.1984. V.29. № 5. P.2709.

5. Malikov R.F., Trifonov E.D. // Opt. Comm. 1984. V.52. №1. P.74.

6. Варнавский О.П., Киркин А.М., Леонтович А.М. и др. // Журн. экспкрим. и теорет. физики. Т.86. № 4. С.1227.

7. Божанов Н.А., Буляница Д.С., Зайцев А.И. и др. // Там же. 1990. Т.97. № 6. С. 1995.

8. Benedict M.G., Ermolaev A.M., Malyshev V.A. et al. // Superradiance. Bristol; Philadelphia: Inst. Phys. Publ., 1996. P.326

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина