Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Рефракция радиоволн (преломление)
Преломленик радиоволн в атмосфере

Описание

При распространении радиоволн в более плотных слоях атмосферы проявляется эффект преломления радиоволн из-за неоднородности слоев атмосферы. Плавное отклонение луча от прямолинейного пути его распространения называется рефракцией. Радиоволны, проникая в более плотные слои, уменьшают свою скорость и, наоборот, выходя из плотных слоев, увеличивают ее. В результате радиолуч отклоняется от прямолинейного участка либо выпуклостью вверх, огибая землю, либо выпуклостью вниз, удаляясь от земной поверхности. Дальность действия РЛС при этом соответственно либо возрастает, либо уменьшается.
Особый интерес представляет явление критической рефракции или сверхрефракции, когда кривизна луча равна или больше кривизны земного шара. При таком распространении радиоволн дальность их действия превосходит во много раз дальность прямой видимости. В технике этот случай распространения радиоволн называют волноводным. Наблюдения подтверждают возможность достаточно устойчивого приема УКВ на расстояниях, доходящих до 1000 км.
Как и для световых волн, для радиоволн характерно явление интерференции или взаимодействия фаз радиоволн, распространяющихся в пространстве. При взаимодействии радиоволн, имеющих одинаковые амплитуды, но находящихся в противофазе, результирующее поле будет равно нулю. Это явление оказывается вредным и вызывает мерцание отметок от целей на экране радиолокатора.
Искривление радиолучей в тропосфере в результате ее неоднородности.
Рис.1.
Изменение направления распространения радиоволн в неоднородной среде, показатель преломления которой зависит от координат времени. На плоской границе раздела двух однородных сред с показателями преломления и плоская волна преломляется по Снелля закону преломления
.
где Θ1 – угол падения, Θ2– угол преломления волны. Амплитуда преломлённой волны зависит от её поляризации и определяется Френеля формулами.
Наиболее практический интерес представляют законы распространения радиоволн в неоднородных атмосферах планет и их спутников. Показатели преломления атмосфер непрерывно меняются в пространстве, и траектории радиоволн в них определяются уравнениями геометрической оптики. Существует несколько типов и видов распространения радиоволн, которые характеризуются местоположением излучателя и приёмника и свойствами среды распространения. При расположении приёмника на поверхности планеты, а излучателя – в атмосфере планеты или за её пределами возможны 3 типа распространения радиоволн: истинная, Фотограмметрическая и полная рефракция (соответствующие углы преломления, которые лежат в вертикальной плоскости, проходящей через излучатель, приёмник и центр планеты). Истинная и фотограмметрическая рефракция определяются соответственно углами, лежащими между прямой «передатчик – приёмник» и касательными к траектории луча в точках излучения и приёма. Полная рефракция характеризуется углом между касательными к траектории луча в точках расположения излучателя и приёмника.
Каждый тип распространения радиоволн делится на несколько видов: оптическая рефракция, радио рефракция, тропосферная, ионосферная, регулярная, случайная, которые определяются диапазоном электромагнитных волн, характером электрических свойств среды распространения и её пространственными и временными изменениями. Характер распространения радиоволн в сферически-слоистых атмосферах планет определяется величиной отношения радиуса кривизны траектории луча к радиусу планеты:
Приведённая классификация типов и видов распространения радиоволн соответствует некоторым средним условиям изменения показателя преломления с высотой. В реальной атмосфере планеты п меняется с высотой по более сложному закону и, кроме того, зависит от горизонтальных координат. – В этом случае искривление траектории волны будет происходить как в вертикальной, так и в горизонтальной плоскости и будет определяться вертикальными и горизонтальными углами рефракции. Эффекты рефракции радиоволн в атмосферах планет подробно изучены, и результаты теоретических и экспериментальных исследований широко используются в практических приложениях, в частности при определении координат естественных и искусственных излучателей.

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Особенности распространения радиоволн.
По аналогии со световыми волнами УКВ распространяются прямолинейно и огибают лишь предметы, имеющие геометрические размеры, соизмеримые с длиной волны. Огибание препятствий радиоволнами дифракция, сказывается тем сильнее, чем больше длина волны и чем меньше размеры препятствия. На границе двух сред происходит отражение радиоволн по закону оптики – угол падения равен углу отражения. Частичное преломление радиоволн также происходит по законам оптики. Крупные искусственные сооружения и горы, встречающиеся на пути радиоволн, а также сферическая форма земли препятствуют распространению радиоволн вдоль земли. Дальность радиолокационной станции обнаружения ограничивается обычно прямой видимостью между ее антенной и целью. Дальность прямой видимости (геометрической) может быть определена по формуле:
 
где h – высота подъема антенны РЛС над землей в метрах, H – высота цели над землей в метрах.
Эта формула легко выводится из простых геометрических соотношений с учетом радиуса земного шара, равного 6400 км. На дальность действия радиолокационной станции обнаружения оказывают влияние многие причины. Распространение СВЧ волн в нижних слоях атмосферы зависит от влажности, температуры и атмосферного давления. Верхние слои атмосферы, где под влиянием солнца и космических лучей происходит ионизация газа (расщепление электрически нейтральных атомов), оказывают влияние на распространение только самых длинных волн диапазона УКВ.
Большое влияние на распространение радиоволн короче 30 см в нижних слоях атмосферы оказывают гидрометеоры (дождь, туман, облака и т. д.). Затухание радиоволн в парах воды особенно сильно сказывается для сантиметрового диапазона. Затухание радиоволн в атмосфере может заметно уменьшать дальность действия при больших расстояниях. На малых расстояниях оно сказывается незначительно. На миллиметровых волнах поглощение сказывается на определенных длинах волн и обусловливается молекулярным строением входящих в атмосферу газов. Затухание в атмосфере требуется учитывать для волн короче 10 см, так как на этих волнах дальность действия РЛС заметно уменьшается при наличии тумана, облаков и дождя. Так, сильный дождь вызывает затухание 0,3 – 0,4 дб/км для радиоволн длиной 3 – 5 см.
Достижения науки и техники в области создания мощных генераторов волн диапазона УКВ (соответственно СВЧ волн) позволяют сейчас создавать импульсные передатчики, обеспечивающие необходимую форму и минимальную длительность генерируемых импульсов.
Широкое применение СВЧ волн в радиолокации объясняется преимуществами радиоволн этого диапазона.
 

 

Реализации эффекта

Особенности распространения радиоволн и зона уверенного приема.
Уверенным приемом называют такие условия приема передач, когда независимо от погоды, состояния солнечной активности, времени суток и года, температуры и влажности воздуха, а также других факторов обеспечивается прием программ заранее выбранного телевизионного передатчика.
Официальная зона уверенного приема определяется расстоянием прямой видимости передающей антенны до точки установки приемной антенны. При этом исходят из того, что ультракороткие волны (УКВ), на которых ведутся телевизионные передачи, распространяются прямолинейно, подобно свету, не огибают земную поверхность и не отражаются ионосферой в противоположность волнам коротковолнового диапазона. В связи с тем, что поверхность Земли шарообразна с радиусом сферы около 6370 км, можно вывести следующую формулу для определения максимальной дальности, соответствующей прямой видимости:
,
где D – максимальная дальность прямой видимости, км; Н – высота передающей антенны, м; h – высота приемной антенны, м. Формула не учитывает фактического рельефа местности и предполагает, что антенны установлены на идеально ровной сферической поверхности Земли. Кроме того, при распространении радиоволн УКВ диапазона все-таки имеют место и дифракция, и рефракция радиоволн. Дифракцией радиоволн называют явления, возникающие при встрече радиоволн с препятствиями, когда они огибают препятствие и проникают в область тени, отклоняясь от прямолинейного пути. Когда передающая и приемная антенны разделены выпуклостью земного шара, дифракция радиоволн является одной из причин приема сигналов за пределами прямой видимости. Эффект дифракционного проникновения радиоволны в область тени зависит от соотношения между размером препятствия и длиной волны и выражен тем сильнее, чем больше длина волны. Поэтому в диапазоне УКВ, где длина волны сравнительно мала, эффект дифракции не так велик, как в диапазоне длинных или средних волн, но все-таки имеет место.
Распространению радиоволн за пределы прямой видимости также способствует явление, называемое нормальной тропосферной рефракцией (преломлением). Показатель преломления зависит от давления и температуры воздуха, которые убывают с высотой. Это приводит к увеличению максимальной дальности возможного уверенного приема телевизионных передач по сравнению с максимальной дальностью, ограниченной условиями прямой видимости.
Помимо явлений дифракции и нормальной рефракции дальнему распространению радиоволн способствует их рассеяние различными наземными металлическими предметами в виде железобетонных масс зданий, мостов, мачт, а также неоднородностями в верхних слоях атмосферы. В результате рассеяния возникают вторичные излучения сигнала, которые, конечно, значительно слабее по мощности основного. Однако при наличии высокоэффективной антенны и достаточно чувствительного телевизионного приемника можно считать реальным достижение уверенного приема телевизионных передач благодаря упомянутым выше явлениям на значительно больших расстояниях, чем дает формула дальности прямой видимости. Практика подтверждает такой вывод. Действительно, подставив в формулу высоты передающей 525 м (высота Останкинской телебашни) и приемной 30 м антенн, получим дальность, равную 101 км, хотя известно, что в действительности передачи телецентра в Останкине хорошо видны на значительно больших расстояниях.
Область, в пределах которой оказывается возможным уверенный прием телевидения, можно поэтому разбить на две зоны: прямой видимости и полутени. В зоне прямой видимости напряженность электромагнитного поля сигнала достаточно велика, и прием возможен с помощью обычных антенн. Расширить зону прямой видимости данного телевизионного передатчика в целях использования сравнительно простой антенны можно лишь увеличением высоты ее установки. Однако в связи с тем, что высот приемной антенны обычно значительно меньше высоты передающей, расширение зоны прямой видимости таким способом оказывается незначительным. Так, в приведенном выше примере увеличение высоты приемной антенны с 30 до 60 м дает расширение зоны прямой видимости с 101 лишь до 109 км. В зоне полутени напряженность поля сигнала значительно ниже, чем в зоне прямой видимости, так как в зону полутени проникает лишь небольшая часть энергии сигнала, излученного передающей антенной. Это вынуждает использование в зоне полутени для уверенного приема высокоэффективных антенн, которые отличаются от сравнительно простых большими размерами и значительно более сложной конструкцией.
Как уже было отмечено, с уменьшением длины волны явления дифракции ослабевают. При этом увеличивается затухание сигнала в атмосфере за счет поглощения энергии различными посторонними частицами (пыль, снег, дождь, туман) и молекулами воздуха. Поэтому протяженность зоны полутени зависит от длины волны, т. е. от номера частотного канала. При достаточно большой мощности телевизионного передатчика, когда ведется прием передач программного телецентра, зона полутени ограничена расстоянием 200...220 км от передатчика, работающего на 1-2 м каналах, 160...180 км от передатчика, работающего на 3-5 м каналах, 120...150 км от передатчика, работающего на 6-12-м каналах. Зоны полутени для диапазона дециметровых волн практически не существует. Кроме того, наблюдается повышенное затухание сигнала в атмосфере для этого диапазона. Вот почему можно считать, что зона уверенного приема дециметрового телевизионного передатчика ограничивается расстоянием прямой видимости, уменьшенным примерно в 1, 2 раза.
Следует заметить, что указанные границы зоны полутени и границы зоны прямой видимости не являются резкими, а в значительной степени размыты. Кроме того, они очень приближенны, так как совершенно не учитывают фактического рельефа местности. При наличии на трассе высоких холмов и горных преград максимальные расстояния уверенного приема могут оказаться значительно меньшими, а уверенный прием даже при небольших расстояниях от передатчика может оказаться совершенно невозможным. За границей зоны полутени напряженность поля практически
равна нулю, и устойчивый прием нeocyщесвим даже при наличии высокоэффективных антенн.

Интерференция радиоволн играет существенную роль в процессах излучения и распространения радиоволн. При излучении радиоволн сложными антенными устройствами, состоящими из нескольких излучателей (вибраторов или щелей, см. Антенна), радиоволны от отдельных излучателей интерферируют между собой. Амплитуда результирующей волны в разных направлениях оказывается различной, что и определяет диаграмму направленности антенны. Например, в результате И. р. от двух вибраторов B1 и B2, разнесённых на расстояние, равное нескольким длинам волн и питаемых токами одинаковой амплитуды, фазы и частоты, получается многолепестковая диаграмма направленности. В максимумах диаграммы фазы волн от отдельных излучателей совпадают, а амплитуды электрического и магнитного полей E1, H1 складываются: E = 2E1, Н = 2H1. Поток энергии в направлении максимумов пропорционален произведению 2E1×2H1, т. е. в 4 раза больше, чем для излучения каждого вибратора в отсутствии другого. Зато в направлении минимумов два вибратора вместе вообще не излучают, так как в этих направлениях суммарное поле равно нулю: Е = 0 и Н = 0. Варьируя число вибраторов и расстояние между ними, можно создавать антенны с заданной диаграммой направленности. См. Излучение и приём радиоволн.
При распространении радиоволн И. р. возникает прежде всего из-за их отражения от поверхности Земли, в результате чего в каждую точку над Землёй приходят 2 волны ‒ пришедшая прямо и отражённая, интерферирующие друг с другом. В связи с этим на диаграмме направленности приёмной антенны появляются дополнительные лепестки, число которых тем больше, чем больше высота антенны над Землёй и чем меньше длина волны. При распространении средних и коротких радиоволн интерференция возникает в том случае, если в одну и ту же точку пространства попадают волны, идущие непосредственно от передатчика и отражённые от ионосферы, или волны, отражённые разными участками ионосферы. Для ультракоротких радиоволн интерференция нередко получается за счёт прихода в данную точку волн, прошедших различные пути в тропосфере, либо за счёт их отражения от местных предметов.
В радиотехнике во многих случаях возможно прямое измерение разности фаз интерферирующих колебаний, а так как в интерференционной картине распределение разностей фаз обусловлено взаимным расположением излучателя и приёмника, то их измерение может служить методом определения местоположения приёмника радиоволн относительно излучателя. На этом основан ряд фазовых радионавигационных систем.
В отличие от оптики, в радиотехнике возможно непосредственное измерение частоты излучаемых волн. Поэтому, исследуя интерференционную структуру поля двух передатчиков, можно измерять расстояние между ними. Наоборот, зная это расстояние, можно с высокой степенью точности определять скорость распространения радиоволн в данных условиях. Существует ряд интерференционных методов измерения расстояний и скорости радиоволн.
 

Дифракция радиоволн, явления, возникающие при встрече радиоволн с препятствиями. Радиоволна, встречая при распространении в однородной среде препятствие, изменяется по амплитуде и фазе и проникает в область тени, отклоняясь от прямолинейного пути. Это явление, аналогичное дифракции света, называется Д. р. В реальных случаях распространения радиоволн препятствия могут иметь произвольную форму и быть как непрозрачными, так и полупрозрачными для радиоволн.
Д. р. на сферической поверхности Земли является одной из причин приёма радиосигналов за пределами прямой видимости, когда передатчик и приёмник разделены выпуклостью земного шара. Эффект дифракционного проникновения радиоволны в область тени, как и в оптическом случае, зависит от соотношения между размером препятствия и длиной волны и выражен тем сильнее, чем больше длина волны. С другой стороны, радиоволны, распространяясь вблизи полупроводящей поверхности Земли, затухают вследствие частичного поглощения энергии волны Землёй тем сильнее, чем короче волна. Поэтому дальность распространения так называемой земной волны существенно зависит от её длины. Достаточно длинные волны могут распространяться за счёт Д. р. на значительные расстояния, достигающие иногда нескольких тысяч км.
Д. р. на отдельно стоящих зданиях и выпуклостях рельефа, расположенных вдоль трассы (горы и др.), также может играть полезную роль. Она вызывает перераспределение энергии волны и может привести к «усилению» радиосигнала за препятствием.
Особую роль играет дифракция при распространении радиоволн в средах, содержащих локальные неоднородности, например в ионосфере, где радиоволна встречает множество хаотически расположенных препятствий ‒ облаков различной формы, отличающихся электрическими свойствами. Непрерывно происходящие изменения и движения неоднородностей вызывают изменения энергии сигнала в точке приёма ‒ так называемые дифракционные замирания радиоволны.
Дифракционные явления могут быть существенными при излучении радиоволн направленными антеннами и при радиолокации сложных объектов.

Литература

1. Физическая энциклопедия / Гл. ред. А.М. Прохоров. – М.: Большая Российская энциклопедия. Т.4., 1994. 704 с.

2. Фейнберг Е. Л., Распространение радиоволн вдоль земной поверхности, М., 1961.

3. Гуревич А. В., Шварцбург А. Б., Нелинейная теория распространения радиоволн в ионосфере, М., 1973.

4. Бреховских Л. М., Волны в слоистых средах, 2 изд., М., 1973.

5. Татарский В. И., Распространение волн в турбулентной атмосфере, М., 1967.

6. Долуханов М. П., Распространение радиоволн, 4 изд., М., 1972.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина