Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Турбулентное течение в пограничном слое
Турбулентное течение в пограничном слое

Описание

Турбулентное течение (от лат. turbulentus – бурный, беспорядочный), форма течения жидкости или газа, при которой их элементы совершают неупорядоченные, неустановившиеся движения по сложным траекториям, что приводит к интенсивному перемешиванию между слоями движущихся жидкости или газа.
Режим течения жидкости характеризуется числом Рейнольдса Re. Когда значение Re меньше некоторого критического числа Rekp, имеет место ламинарное течение жидкости; если Re > Rekp, режим течения может стать турбулентным.
Течение в пограничном слое
Рис.1.
Пограничный слой (ПС), область течения вязкой жидкости (газа) с малой по сравнению с продольными размерами поперечной толщиной, образующаяся у поверхности обтекаемого твёрдого тела или на границе раздела двух потоков жидкости с различными скоростями, температурами или химическим составом. ПС характеризуется резким изменением в поперечном направлении скорости (динамический ПС), или температуры (тепловой, или температурный, ПС), или же концентраций отдельных химических компонентов (диффузионный, или концентрационный, ПС). На формирование течения в ПС основное влияние оказывают вязкость, теплопроводность и диффузионная способность жидкости (газа). Внутри динамического ПС происходит плавное изменение скорости от её значения во внешнем потоке до нуля на стенке (вследствие прилипания вязкой жидкости к твёрдой поверхности). Аналогично внутри ПС плавно изменяются температура и концентрация.
Режим течения в динамическом ПС зависит от Рейнольдса числа Re и может быть ламинарным или турбулентным. При турбулентном режиме в ПС на некоторое усреднённое движение частиц жидкости в направлении основного потока налагается хаотическое, пульсационное движение отдельных жидких конгломератов. В результате интенсивность переноса количества движения, а также процессов тепло- и массопереноса резко увеличиваются, что приводит к возрастанию коэффициента поверхностного трения, тепло- и массообмена. Значение критического числа Рейнольдса, при котором происходит переход в ПС ламинарного течения в турбулентное, зависит от степени шероховатости обтекаемой поверхности, уровня турбулентности внешнего потока, Маха числа М и некоторых др. факторов. При этом переход ламинарного режима течения в турбулентный с возрастанием Re происходит в ПС не внезапно, а имеется переходная область, где попеременно чередуются ламинарный и турбулентный режимы.

 

 

Ключевые слова

 

Разделы наук

 

Используется в научно-технических эффектах

Подъемная сила. Эффект Коанде (Подъемная сила. Эффект Коанде)
Истечение газа через сверхзвуковое сопло (Истечение газа через сверхзвуковое сопло )

 

Используется в областях техники и экономики

2Космическая техника и ракетостроение
2Авиастроение
1Судостроение
1Энергетическое машиностроение
1Теплоэнергетика и теплотехника
1Электроэнергетика

 

Используются в научно-технических эффектах совместно с данным эффектом естественнонаучные эффекты

1Кинематическая характеристика течения жидкости или газа, служащая мерой завихренности течения (Циркуляция скорости)
1Рост толщины пограничного слоя с ростом скорости (Рост толщины пограничного слоя с ростом скорости)
1Толщина пограничного слоя и толщина вытеснения (Толщина пограничного слоя и толщина вытеснения)
2Турбулентное течение в пограничном слое (Турбулентное течение в пограничном слое)
1Ламинарное течение в пограничном слое (Ламинарное течение в пограничном слое)
2Истечение газа со сверхзвуковой скоростью в область, где давление меньше давления в струе (Истечение газа со сверхзвуковой скоростью в область, где давление меньше давления в струе)
1Распределение давления по профилю крыла (Распределение давления по профилю крыла)
2Вихревое движение газа (Вихревое движение газа)
2Сопротивление движению тела со стороны обтекающей его жидкости или сопротивление движению жидкости, вызванное влиянием стенок труб, каналов и т.д. (Гидродинамическое сопротивление)
1Течение идеальной жидкости (Идеальная жидкость)
1Центр давления (Центр давления)
1Эффект аэроупругости (Эффект аэроупругости)
1Упругая деформация изгиба твердых тел (Деформация изгиба)
1Создание момента силы (Создание момента силы )
1Давление при контакте (Давление при контакте)
1Эффект передачи момента силы посредством твёрдого тела (Механического рычага эффект)
1Истечение газа со сверхзвуковой скоростью в область, где давление больше давления в струе (Истечение газа со сверхзвуковой скоростью в область, где давление больше давления в струе)
1Общие условия перехода от дозвукового течения к сверхзвуковому и обратно (Условия перехода от дозвукового течения к сверхзвуковому и обратно)
1Струя – форма течения жидкости, при которой жидкость(газ) течёт в окружающем пространстве, заполненном жидкостью (газом) с отличающимися от струи параметрами (скоростью, температурой, плотностью, составом и тому подобное) (Течение в сверхзвуковой струе)
1Распространение ударных волн (Распространение возмущений, содержащих разрывы плотности, давления и скорости распространения, в нелинейных средах)

 

Применение эффекта

1. Ламинарное течение жидкости наблюдается, например, при достаточно медленном течении жидкости в трубе. С увеличением скорости движения ламинарное течение в некоторый момент переходит в турбулентное течение, возникают вихри, происходит интенсивное перемешивание слоев жидкости, сопротивление жидкости изменяется (рис. 1).
Распределение скоростей движения жидкости в сечении трубы.
Рис.1.
2. Рассмотрим движение шарика, помещенного в вязкую жидкость. Когда твердое тело движется в жидкости, имеет место не трение поверхности тела (например, шарика) о жидкость, а трение слоев жидкости друг о друга. Непосредственно у поверхности относительная скорость жидкости равна нулю, то есть слой, прилегающий к поверхности, движется вместе с телом. Этот слой увлекает соседние слои жидкости, которые приходят в движение (рис.2.).
Обтекание шарика
Рис.2.

 

Реализации эффекта

Пограничный слой (ПС), область течения вязкой жидкости (газа) с малой по сравнению с продольными размерами поперечной толщиной, образующаяся у поверхности обтекаемого твёрдого тела или на границе раздела двух потоков жидкости с различными скоростями, температурами или химическим составом. Пограничный слой характеризуется резким изменением в поперечном направлении скорости (динамический ПС), или температуры (тепловой, или температурный, ПС), или же концентраций отдельных химических компонентов (диффузионный, или концентрационный, Пограничный слой). На формирование течения в ПС основное влияние оказывают вязкость, теплопроводность и диффузионная способность жидкости (газа). Внутри динамического ПС происходит плавное изменение скорости от её значения во внешнем потоке до нуля на стенке (вследствие прилипания вязкой жидкости к твёрдой поверхности). Аналогично внутри Пограничный слой плавно изменяются температура и концентрация.
Режим течения в динамическом ПС зависит от числа Рейнольдса Re и может быть ламинарным или турбулентным. При ламинарном режиме отдельные частицы жидкости (газа) движутся по траекториям, форма которых близка к форме обтекаемого тела или условной границы раздела между двумя жидкими (газообразными) средами. При турбулентном режиме в ПС на некоторое осреднённое движение частиц жидкости в направлении основного потока налагается хаотическое, пульсационное движение отдельных жидких конгломератов. В результате интенсивность переноса количества движения, а также процессов тепло- и массопереноса резко увеличиваются, что приводит к возрастанию коэффициента поверхностного трения, тепло- и массообмена. Значение критического числа Рейнольдса, при котором происходит переход в Пограничный слой ламинарного течения в турбулентное, зависит от степени шероховатости обтекаемой поверхности, уровня турбулентности внешнего потока, Маха числа М и некоторых др. факторов. При этом переход ламинарного режима течения в турбулентный с возрастанием Re происходит в Пограничный слой не внезапно, а имеется переходная область, где попеременно чередуются ламинарный и турбулентный режимы.
Толщина d динамического ПС определяется как то расстояние от поверхности тела (или от границы раздела жидкостей), на котором скорость в ПС можно практически считать равной скорости во внешнем потоке. Значение d зависит главным образом от числа Рейнольдса, причём при ламинарном режиме течения d ~ l×Re-0.5, а при турбулентном — d ~ l×Re-0.2, где l — характерный размер тела.
Развитие теплового ПС определяется, помимо числа Рейнольдса, также Прандтля числом, которое характеризует соотношение между толщинами динамического и теплового ПС Соответственно на развитие диффузионного ПС дополнительное влияние оказывает диффузионное число Прандтля, или число Шмидта.
При больших скоростях внешнего потока газа внутри ПС происходит переход кинетической энергии молекул в тепловую, вследствие чего локальная температура газа увеличивается. В случае теплоизолированной поверхности температура газа в ПС может приближаться к температуре торможения
,
где Te температура газа вне ПС, k = cp/cv — отношение теплоёмкостей при постоянном давлении и постоянном объёме.
Характер течения в ПС оказывает решающее влияние на отрыв потока от поверхности обтекаемого тела. Причина этого заключается в том, что при наличии достаточно большого положительного продольного градиента давления кинетическая энергия заторможенных в ПС частиц жидкости становится недостаточной для преодоления сил давления, течение в ПС теряет устойчивость и возникает т. н. отрыв потока.
При очень больших числах Рейнольдса толщина ПС очень мала по сравнению с характерными размерами тела. Поэтому почти во всей области течения, за исключением тонкого ПС, влияние сил вязкости несущественно по сравнению с инерциальными силами, и жидкость в этой области можно рассматривать как идеальную. Одновременно вследствие малой толщины ПС давление в нём в поперечном направлении можно практически считать постоянным. В результате весьма эффективным оказывается такой метод изучения обтекания тел потоком жидкости (газа), когда всё поле течения разбивается на 2 части — область течения идеальной жидкости и тонкий ПС у поверхности тела. Течение в первой области изучается с помощью уравнений движения идеальной жидкости, что позволяет определить распределение давления вдоль поверхности тела; тем самым определяется и давление в ПС Течение внутри ПС рассчитывается после этого с учётом вязкости, теплопроводности и диффузии, что позволяет определить поверхностное трение и коэффициент тепло- и массообмена. Однако такой подход оказывается неприменимым в явном виде в случае отрыва потока от поверхности тела. Он неприменим и при малых Re, когда влияние вязкости распространяется на довольно большие расстояния от поверхности тела.

 

Литература

1. Лойцянский Л. Г., Механика жидкости и газа, 4 изд., М., 1973.

2. Шлихтинг Г.. Теория пограничного слоя, пер. с нем., М., 1974.

3. Основы теплопередачи в авиационной и ракетной технике, М., 1960.

4. Кутателадзе С. С., Леонтьев А. И., Тепломассообмен и трение в турбулентном пограничном слое, М., 1972.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина