Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Переход ламинарного пограничного слоя в турбулентный. Критическое число Рейнольдса
Переход ламинарного пограничного слоя в турбулентный. Критическое число Рейнольдса

Описание

Режим течения жидкости характеризуется числом Рейнольдса Re. Когда значение Re меньше некоторого критического числа Rekp, имеет место ламинарное течение жидкости; если Re > Rekp, режим течения может стать турбулентным.
Течение в пограничном слое
Рис.1.
Режим течения в динамическом пограничном слое зависит от Рейнольдса числа Re и может быть ламинарным или турбулентным. При турбулентном режиме в пограничном слое на некоторое усреднённое движение частиц жидкости в направлении основного потока налагается хаотическое, пульсационное движение отдельных жидких конгломератов. В результате интенсивность переноса количества движения, а также процессов тепло- и массопереноса резко увеличиваются, что приводит к возрастанию коэффициента поверхностного трения, тепло- и массообмена. Значение критического числа Рейнольдса, при котором происходит переход в пограничном слое ламинарного течения в турбулентное, зависит от степени шероховатости обтекаемой поверхности, уровня турбулентности внешнего потока, Маха числа М и некоторых др. факторов. При этом переход ламинарного режима течения в турбулентный с возрастанием Re происходит в пограничном слое не внезапно, а имеется переходная область, где попеременно чередуются ламинарный и турбулентный режимы.
Начало перехода от ламинарного течения к турбулентному обычно связывают с появлением бурных процессов в виде турбулентных пятен и низкочастотных пульсаций большой амплитуды. Однако в настоящее время стало совершенно очевидным, что длинная последовательность физических процессов, приводящая в конечном счете к разрушению ламинарного течения (по крайней мере в случае малой интенсивности внешних возмущений), берет начало намного раньше, а именно в трансформации внешних возмущений различной природы во внешнем потоке в волны пограничного слоя либо в их генерации в самом пограничном слое, происходящей на неровностях обтекаемой поверхности (уступы, шероховатости и т. п.). В соответствии с этим термин «процесс перехода к турбулентности или эквивалентный ему термин «возникновение турбулентности» понимаются в широком смысле как совокупность всех явлений, ответственных за разрушение ламинарного режима течения и образование турбулентного пограничного слоя.
Таким образом, процесс перехода ламинарного пограничного слоя в турбулентное состояние при малой интенсивности внешних возмущений состоит из трех условно разделяемых этапов: генерация волн пограничного слоя, их усиление по законам линейной теории и нелинейное разрушение ламинарного режима течения. Каждому этапу в перечисленной последовательности соответствуют характерные области в пространстве по мере возрастания расстояния от передней кромки модели. Отметим, что последняя, нелинейная область развития процесса перехода относительно малопротяженна и характер ее в значительной степени определяется свойствами исходного течения, внешних возмущений и процессами, происходящими в предыдущих двух областях.
Описанная последовательность стадий перехода схематически показана на рис. 2.
 Схема основных стадий процесса перехода к турбулентности в пограничном слое: I — стадия неустойчивости возмущений малых амплитуд (волн Толлмина-Шлихтинга), II — стадия трехмерного развития волн неустойчивости конечных амплитуд (l-структур), III — область развития продольных вихревых образований, IV — стадия концентрации завихренности и слоев сильного сдвига, V — область образования турбулентных пятен, VI — стадия развития и взаимодействия турбулентных пятен
Рис.2.
Как видно, переход ламинарного течения в турбулентное в пограничном слое является непрерывным процессом, начиная от возбуждения малых возмущений и кончая установлением развитого турбулентного течения со своим характерным профилем средней скорости и внутренней структурой. Однако в практических приложениях важно понятие «точка перехода». С точкой перехода связывают начало заметных изменений в структуре течения и его интегральных характеристик. На фиксации этих изменений основано множество способов экспериментального определения положения точки перехода: по отклонению средней скорости от ламинарного закона, по изменению закономерности распределения полного давления (один из наиболее распространенных методов), коэффициентов трения и теплоотдачи, характеру поведения возмущений при термоанемометрических измерениях и по распределению коэффициента перемежаемости и т.д. Перестройка течения происходит неоднородно по толщине пограничного слоя и различным образом сказывается на различных параметрах течения.

 

 

Ключевые слова

 

Разделы наук

 

Используется в научно-технических эффектах

Расчетный режим работы сверхзвукового сопла (Расчетный режим работы сверхзвукового сопла )
Cопло с центральным телом (Cопло с центральным телом)

 

Используется в областях техники и экономики

2Космическая техника и ракетостроение
2Авиастроение
1Автомобилестроение
2Двигателестроение
1Производство машиностроительных материалов
2Теплоэнергетика и теплотехника
1Воздушный транспорт
1Энергетическое машиностроение

 

Используются в научно-технических эффектах совместно с данным эффектом естественнонаучные эффекты

1Сверхзвуковой пограничный слой при обтекании тела потоком с большим числом М (Сверхзвуковой пограничный слой при обтекании тела потоком с большим числом М)
1Движение жидкости в пограничном слое (Движение жидкости в пограничном слое)
1Рост толщины пограничного слоя с ростом скорости (Рост толщины пограничного слоя с ростом скорости)
1Трение при турбулентном течении (Трение при турбулентном течении)
2Переход ламинарного пограничного слоя в турбулентный. Критическое число Рейнольдса (Переход ламинарного пограничного слоя в турбулентный. Критическое число Рейнольдса)
1Истечение газа со сверхзвуковой скоростью в область, где давление меньше давления в струе (Истечение газа со сверхзвуковой скоростью в область, где давление меньше давления в струе)
1Объемный расход жидкости или газа (Объемный расход)
2Вихревое движение газа (Вихревое движение газа)
1Течение идеальной жидкости (Идеальная жидкость)
1Аэродинамическое качество (Аэродинамическое качество)
1Критерии подобия. Число Маха (Критерии подобия. Число Маха)
1Возникновение резкого увеличения давления, скорости, температуры и уменьшение скорости течения газа в сверхзвуковой области (Точка разветвления струй, критическая скорость потока при обтекании)
1Сопротивление движению тела со стороны обтекающей его жидкости или сопротивление движению жидкости, вызванное влиянием стенок труб, каналов и т.д. (Гидродинамическое сопротивление)
1Струя – форма течения жидкости, при которой жидкость(газ) течёт в окружающем пространстве, заполненном жидкостью (газом) с отличающимися от струи параметрами (скоростью, температурой, плотностью, составом и тому подобное) (Течение в сверхзвуковой струе)
1Возникновение скачка уплотнения воздуха, образующегося перед летящим со звуковой скоростью телом и имеющим форму конуса (Волны возмущения у тела, движущегося с дозвуковой скоростью)
1Распространение ударных волн (Распространение возмущений, содержащих разрывы плотности, давления и скорости распространения, в нелинейных средах)

 

Применение эффекта

1. Ламинарное течение жидкости наблюдается, например, при достаточно медленном течении жидкости в трубе. С увеличением скорости движения ламинарное течение в некоторый момент переходит в турбулентное течение, возникают вихри, происходит интенсивное перемешивание слоев жидкости, сопротивление жидкости изменяется (рис. 1).
Распределение скоростей движения жидкости в сечении трубы.
Рис.1.
2. Водяная пленка, образующаяся при скольжении лыж, обладает свойством прилипания к поверхности скольжения. Благодаря этому, при движении лыж, на поверхности скольжения образуется пограничный слой. Это слой, в пределах которого силы вязкости сравнимы или доминируют над силами инерции. Скорость движения воды в водяной пленке пограничного слоя изменяется от скорости равной скорости движения лыжи, до нуля на месте контакта пограничного слоя со снежной трассой
Силы сопротивления трения для ламинарного и турбулентного пограничных слоев существенно отличаются друг от друга.
При ламинарном режиме движения сопротивление трения обусловлено вязкостью и пропорционально первой степени скорости движения. При уменьшении вязкости пограничного слоя начинают преобладать силы инерции, пропорциональные квадрату скорости - возникает режим турбулентного движения. Сила сопротивления трения при турбулентном режиме пограничного слоя может достигать значения в 25 -100 раз большего, чем сила сопротивления при ламинарном режиме. Режим (ламинарный или турбулентный) скольжения лыжи зависит не от реальной вязкости, плотности, скорости и линейных размеров пограничного слоя, а лишь от их соотношения, выражаемого числом Рейнольдса.
Под понятием перехода от ламинарного к турбулентному режиму, понимаются собственно процесс распада ламинарного режима и формирование турбулентного режима. В настоящее время стало очевидным, что длинная последовательность физических процессов, приводящая в конечном итоге к разрушению ламинарного режима, берет начало в трансформации внешних возмущений (неровностей трассы, структуры снега, усилий отталкивания спортсмена) в волны пограничного слоя, либо в их генерации в самом пограничном слое.

Реализации эффекта

Пограничный слой (ПС), область течения вязкой жидкости (газа) с малой по сравнению с продольными размерами поперечной толщиной, образующаяся у поверхности обтекаемого твёрдого тела или на границе раздела двух потоков жидкости с различными скоростями, температурами или химическим составом. Пограничный слой характеризуется резким изменением в поперечном направлении скорости (динамический ПС), или температуры (тепловой, или температурный, ПС), или же концентраций отдельных химических компонентов (диффузионный, или концентрационный, Пограничный слой). На формирование течения в ПС основное влияние оказывают вязкость, теплопроводность и диффузионная способность жидкости (газа). Внутри динамического ПС происходит плавное изменение скорости от её значения во внешнем потоке до нуля на стенке (вследствие прилипания вязкой жидкости к твёрдой поверхности). Аналогично внутри Пограничный слой плавно изменяются температура и концентрация.
Режим течения в динамическом ПС зависит от Рейнольдса числа Re и может быть ламинарным или турбулентным. При ламинарном режиме отдельные частицы жидкости (газа) движутся по траекториям, форма которых близка к форме обтекаемого тела или условной границы раздела между двумя жидкими (газообразными) средами. При турбулентном режиме в ПС на некоторое осреднённое движение частиц жидкости в направлении основного потока налагается хаотическое, пульсационное движение отдельных жидких конгломератов. В результате интенсивность переноса количества движения, а также процессов тепло- и массопереноса резко увеличиваются, что приводит к возрастанию коэффициента поверхностного трения, тепло- и массообмена. Значение критического числа Рейнольдса, при котором происходит переход в Пограничный слой ламинарного течения в турбулентное, зависит от степени шероховатости обтекаемой поверхности, уровня турбулентности внешнего потока, Маха числа М и некоторых др. факторов. При этом переход ламинарного режима течения в турбулентный с возрастанием Re происходит в Пограничный слой не внезапно, а имеется переходная область, где попеременно чередуются ламинарный и турбулентный режимы.
Толщина d динамического ПС определяется как то расстояние от поверхности тела (или от границы раздела жидкостей), на котором скорость в ПС можно практически считать равной скорости во внешнем потоке. Значение d зависит главным образом от числа Рейнольдса, причём при ламинарном режиме течения d ~ l×Re-0.5, а при турбулентном — d ~ l×Re-0.2, где l — характерный размер тела.
Развитие теплового ПС определяется, помимо числа Рейнольдса, также Прандтля числом, которое характеризует соотношение между толщинами динамического и теплового ПС Соответственно на развитие диффузионного ППС дополнительное влияние оказывает диффузионное число Прандтля, или Шмидта число.
При больших скоростях внешнего потока газа внутри ПС происходит переход кинетической энергии молекул в тепловую, вследствие чего локальная температура газа увеличивается. В случае теплоизолированной поверхности температура газа в ПС может приближаться к температуре торможения
,
где Te температура газа вне ПС, k = cp/cv — отношение теплоёмкостей при постоянном давлении и постоянном объёме.
Характер течения в ПС оказывает решающее влияние на отрыв потока от поверхности обтекаемого тела. Причина этого заключается в том, что при наличии достаточно большого положительного продольного градиента давления кинетическая энергия заторможенных в ПС частиц жидкости становится недостаточной для преодоления сил давления, течение в ПС теряет устойчивость и возникает т. н. отрыв потока.
При очень больших числах Рейнольдса толщина ПС очень мала по сравнению с характерными размерами тела. Поэтому почти во всей области течения, за исключением тонкого ПС, влияние сил вязкости несущественно по сравнению с инерциальными силами, и жидкость в этой области можно рассматривать как идеальную. Одновременно вследствие малой толщины ПС давление в нём в поперечном направлении можно практически считать постоянным. В результате весьма эффективным оказывается такой метод изучения обтекания тел потоком жидкости (газа), когда всё поле течения разбивается на 2 части — область течения идеальной жидкости и тонкий ПС у поверхности тела. Течение в первой области изучается с помощью уравнений движения идеальной жидкости, что позволяет определить распределение давления вдоль поверхности тела; тем самым определяется и давление в ПС Течение внутри ПС рассчитывается после этого с учётом вязкости, теплопроводности и диффузии, что позволяет определить поверхностное трение и коэффициент тепло- и массообмена. Однако такой подход оказывается неприменимым в явном виде в случае отрыва потока от поверхности тела. Он неприменим и при малых Re, когда влияние вязкости распространяется на довольно большие расстояния от поверхности тела.

В картине обтекания крыла вязкость приводит к тому, что у самой поверхности профиля на границе между твердой поверхностью и потоком воздуха возникает тоненький слой воздуха, как бы присоединенный к крылу и движущийся вместе с крылом. Его так и называют – пограничный слой. Поведение этого слоя сильно зависит от размеров профиля и скорости его обтекания воздухом. Для того чтобы оценивать степень влияния вязкости воздуха на характер обтекания крыла при разных условиях придумали коэффициент, равный произведению хорды крыла (в метрах) на скорость его движения относительно воздуха (в метрах в секунду), деленному на вязкость воздуха. Называется этот коэффициент числом Рейнольдса в честь английского физика и обозначается как: Re. В моделистских применениях вязкость воздуха можно считать постоянной без большой погрешности и равной 0,000015 м2/сек. Будет удобнее считать число Рейнольдса по приближенной формуле Re=70*V*b. Здесь скорость надо подставить в метрах в секунду, а хорду в миллиметрах. Чтобы было понятнее, приведем пример. Крыло модели планера с хордой 0,1 метр летит со скоростью 6 метров в секунду. Получаем Re=42000. Это очень маленькое значение для летающих моделей и характерно для свободнолетающих моделей класса F1. При таких значениях Re вязкость имеет огромное значение. Обтекание профиля при этом выглядит как показано на рис.1.
Обтекание профиля крыла самолета.
Рис.1.
Здесь интересно обратить внимание на точку В. До нее течение воздуха в пограничном слое плавное, без перемешивания прислойных струек. Такое течение называется ламинарным. В нем практически нет маленьких воздушных вихрей, перемешивающих воздух из соседних слоев. В точке В начинается образование прислойных вихрей, перемешивающих воздух из соседних слоев. Такое течение называется турбулентным. Можно так построить форму образующей профиля, что на его большей верхней части течение воздуха будет ламинарным, а точка В сдвинется назад по профилю. Такие профили называют ламинаризованными. Ламинарное течение в сравнении с турбулентным имеет свои преимущества и недостатки. Здесь назовем только достоинство – при ламинарном течении трение поверхности крыла о воздух меньше. Значит и меньше лобовое сопротивление.

Литература

1. Лойцянский Л. Г., Механика жидкости и газа, 4 изд., М., 1973.

2. Шлихтинг Г.. Теория пограничного слоя, пер. с нем., М., 1974.

3. Основы теплопередачи в авиационной и ракетной технике, М., 1960.

4. Кутателадзе С. С., Леонтьев А. И., Тепломассообмен и трение в турбулентном пограничном слое, М., 1972.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина