Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Распространение радиоволн в ионосфере
Распространение радиоволн в ионосфере

Описание


 
Ионосферу образуют верхние слои земной атмосферы, в которой газы частично (до 1%) ионизированы под влиянием УФ-, рентгеновского и корпускулярного солнечного излучения. Ионосфера электрически нейтральна, она содержит равное количество положительных и отрицательных частиц и является плазмой.
Достаточно большая ионизация, оказывающая влияние на распространение радиоволн, начинается на высоте 60 км (слой D), увеличивается до высоты 300 – 400 км, образуя слои и затем медленно убывает. Зависимость от высоты меняется со временем суток, года, с солнечной активностью, а также с широтой и долготой. Ионизированный слой между 200 и 400 км состоит в основном из равного количества ионов и электронов. Эти частицы погружены в нейтральный газ с концентрацией 108 см-3, состоящий в основном из частиц 02, О, N2 и Не.
Под действием радиоволны в ионосфере могут возникать как вынужденные колебания электронов и ионов, так и различные виды коллективных собственных колебаний (плазменные колебания). В зависимости от частоты радиоволны ω основную роль играют те или другие из них и поэтому электрические свойства ионосферы различны для различных диапазонов радиоволн. При высокой частоте ω в распространении радиоволн принимают участие только электроны, собственная частота колебаний которых (Ленгмюровская частота) равна:

 
где е — заряд, m — масса, N концентрация электронов. Вынужденные колебания свободных электронов ионосферы, в отличие от электронов тропосферы, тесно связанных с атомами, отстают от электрического поля высокочастотной волны по фазе почти на . Такое смещение электронов усиливает поле Е волны в ионосфере (рис. 1).
рис.1
Смещение электронов ионосферы под действием поля волны Е приводит к появлению дополнительного поля
Поэтому диэлектрическая проницаемость ε, равная отношению напряжённости внешнего поля к напряжённости поля внутри среды, оказывается для ионосферы < 1 :
где ν — число столкновений в секунду.
Для высоких частот, начиная с коротких волн, в большей части ионосферы справедливо соотношение: ω2 >> ν2 и показатели преломления n и поглощения равны:
Для волны, у которой ω < ω0 n и χ становятся мнимыми величинами, это означает, что такая волна не может распространяться в ионосфере. Поскольку концентрация электронов N и плазменная частота ω0 в ионосфере увеличиваются с высотой (рис. 2), то падающая волна, проникая в ионосферу, распространяется до такого уровня, при котором показатель преломления обращается в нуль.
 
На этой высоте происходит полное отражение волны от слоя ионосферы. С увеличением частоты падающая волна всё глубже проникает в слой ионосферы. Максимальная частота волны, которая отражается от слоя ионосферы при вертикальном падении, называется критической частотой слоя:
рис.2
Изменение концентрации N электронов в ионосфере с высотой
Критическая частота слоя F2 (главный максимум, рис. 2) изменяется в течение суток и от года к году приблизительно от 5 до 10 Мгц. Для волн с частотой ω > ωкр n всюду > 0, то есть волна проходит через слой, не отражаясь.
При наклонном падении волны на ионосферу максимальная частота волны, возвращающейся на Землю, оказывается выше ωкр. Радиоволна, падающая на ионосферу под углом φ0, испытывая рефракцию, поворачивается к Земле на той высоте, где φ(z) = π/2. Условие отражения при наклонном падении имеет вид: n (z) = sinφ0. Частоты волн, отражающихся от данной высоты при наклонном и вертикальном падении, связаны соотношением: ωнакл = ωверт secφ0. Максимальная частота волны, отражающейся от ионосферы при данном угле падения, то есть для данной длины трассы, называется максимальной применимой частотой (МПЧ).
Существенное влияние на распространение радиоволн оказывает магнитное поле Земли, пронизывающее ионосферу. В постоянном магнитном поле ионизированный газ становится анизотропной средой. Попадающая в ионосферу волна испытывает двойное лучепреломление, то есть расщепляется на 2 волны, отличающиеся скоростью и направлением распространения, поглощением и поляризацией. В магнитном поле H0 на электрон, движущийся со скоростью u, действует сила Лоренца , под действием которой электрон вращается с частотой (гироскопическая частота) вокруг силовых линий магнитного поля. Вследствие этого изменяется характер вынужденных колебаний электронов ионосферы под действием электрического поля волны.
В простейшем случае, когда направление распространения радиоволн перпендикулярно H0 (Е лежит в одной плоскости с H0), волну можно представить в виде суммы 2 волн с Е перпендикулярной  Н0 и Е || Н0. Для первой волны (необыкновенной) характер движения электронов и, следовательно, n изменяются, для второй (обыкновенной) они остаются такими же, как и в отсутствии магнитного поля:
В случае произвольного направления распространения радиоволн относительно магнитного поля Земли формулы более сложные: как n1, так и n2 зависят от ωH. Поскольку отражение радиоволны происходит от слоя, где n = 0, то обыкновенная и необыкновенная волны отражаются на разной высоте. Критические частоты для них также различны.

По мере распространения радиоволн в ионосфере из-за различия в скорости накапливается сдвиг фаз между волнами, вследствие чего поляризация результирующей волны непрерывно изменяется. Линейная поляризация падающей волны в определённых условиях сохраняется, но плоскость поляризации при распространении поворачивается. В общем случае поляризация обеих волн эллиптическая.

Помимо регулярной зависимости электронной концентрации N от высоты (рис. 2), в ионосфере постоянно происходят случайные изменения концентрации. Ионосферный слой содержит большое число неоднородных образований различного размера, которые находятся в постоянном движении и изменении, рассасываясь и возникая вновь. Вследствие этого в точку приёма, кроме основного отражённого сигнала, приходит множество рассеянных волн (рис. 3), сложение которых приводит к замираниям — хаотическим изменениям сигнала.

рис.3
Рассеяние радиоволн на неоднородностях ионосферы
Существование неоднородных образований приводит к возможности рассеянного отражения радиоволн при частотах, значительно превышающих максимальные частоты отражения от регулярной ионосферы. Аналогично рассеянию на неоднородностях тропосферы это явление обусловливает дальнее распространения радиоволн (метрового диапазона).
Характерные неоднородные образования возникают в ионосфере при вторжении в неё метеоритов. Испускаемые раскалённым метеоритом электроны ионизируют окружающую среду, образуя за летящим метеоритом след, диаметр которого вследствие молекулярной диффузии быстро возрастает. Ионизированные следы создаются в интервале высот 80—120 км, длительность их существования колеблется от 0,1 до 100 сек. Радиоволны зеркально отражаются от метеорного следа. Эффективность этого процесса зависит от массы метеорита.

 

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Экспериментальные исследования Люксембург — Горьковского эффекта являются методом исследования ионосферы, так как с их помощью удаётся определить частоту соударений электронов в ионосфере и долю энергии, теряемой электроном при одном соударении. Волны у которых частота ниже МПЧ, используются для дальней радиосвязи на Земле.
Связь при помощи ионосферных волн осуществляется в диапазоне коротких волн и в ночные часы в диапазоне средних волн. Дальность приема 3500-4000 км и более.
Сверхдальнее распространение радиволн используется для теле- и радио передачи информации. Однако, широкому применению препятствует случайный характер возникновения условий для их прохождения . Сверхдальний прием телевизионных передач наблюдается сравнительно редко, сеансы его непродолжительны и не поддаются прогнозированию.
 

 

Реализации эффекта

Начиная с УКВ волны, частота которых выше максимально применимой частоты (МПЧ), проходят через ионосферу. Волны, частота которых ниже МПЧ, отражаясь от ионосферы, возвращаются на Землю. Такие радиоволны называются ионосферными, используются для дальней радиосвязи на Земле. Диапазон ионосферных волн снизу по частоте ограничен поглощением. Поэтому связь при помощи ионосферных волн осуществляется в диапазоне коротких волн и в ночные часы (уменьшается поглощение) в диапазоне средних волн. Дальность распространения радиоволн при одном отражении от ионосферы ~ 3500—4000 км, т.к. угол падения φ на ионосферу из-за выпуклости Земли ограничен: наиболее пологий луч касается поверхности Земли. Связь на большие расстояния осуществляется за счёт нескольких отражений от ионосферы (рис. 4).
рис.4
Распространение радиоволн
Длинные и сверхдлинные волны практически не проникают в ионосферу, отражаясь от её нижней границы, которая является как бы стенкой сферического радиоволновода (второй стенкой волновода служит Земля). Волны, излучаемые антенной в некоторой точке Земли, огибают её по всем направлениям, сходятся на противоположной стороне. Сложение волн вызывает некоторое увеличение напряжённости поля в противолежащей точке.
Радиоволны звуковых частот могут просачиваться через ионосферу вдоль силовых линий магнитного поля Земли. Распространяясь вдоль магнитной силовой линии, волна уходит на расстояние, равное нескольким земным радиусам, и затем возвращается в сопряжённую точку, расположенную в другом полушарии . Разряды молний в тропосфере являются источником таких волн. Распространяясь описанным способом, они создают на входе приёмника сигнал с характерным свистом (свистящие атмосферики).
Для радиоволн инфразвуковых частот, частота которых меньше гироскопической частоты ионов, ионосфера ведёт себя как проводящая нейтральная жидкость, движение которой описывается уравнениями гидродинамики. Благодаря наличию магнитного поля Земли любое смещение проводящего вещества, создающее электрический ток, сопровождается возникновением сил Лоренца, изменяющих состояние движения. Взаимодействие между механическими и электромагнитными силами приводит к перемещению случайно возникшего движения в ионизированном газе вдоль магнитных силовых линий, то есть к появлению магнито-гидродинамических (альфвеновских) волн.

Для сигналов не очень большой мощности две радиоволны распространяются через одну и ту же область ионосферы независимо друг от друга, ионосфера является линейной средой. Для мощных радиоволн, когда поле Е волны сравнимо с характерным «плазменным полем» ионосферы, ε и σ начинают зависеть от напряжённости поля распространяющейся волны. Нарушается линейная связь между электрическим током и полем Е.
Нелинейность ионосферы может проявляться в виде перекрёстной модуляции 2 сигналов (Люксембург — Горьковский эффект) и в «самовоздействии» мощной волны, например в изменении глубины модуляции сигнала, отражённого от ионосферы. Перекрёстная модуляция, явление, наблюдающееся при распространении радиоволн в ионосфере, состоящее в том, что сильное электрическое поле мощной радиоволны, изменяя ("возмущая") скорость движения электронов ионосферы с частотой своей модуляции, вызывает амплитудную модуляцию других радиоволн, проходящих через эту возмущённую область ионосферы.При приёме радиоволн передающей радиостанции, работающей на несущей частоте f1, прослушивается передача другой мощной радиостанции, расположенной на трассе и работающей на несущей частоте f2, существенно отличной от f1.
Впервые наблюдался в 1933 в Эйндховене (Нидерланды), где при приёме швейцарской радиостанции прослушивалась работа лежащей на пути мощной станции «Люксембург». Аналогичное явление наблюдалось в городе Горьком, где при приёме радиостанций, расположенных на западе от Москвы, прослушивались мощные московские станции.
Теория Люксембург — Горьковского эффекта разрабатывалась австралийскими физиками В. Бейли и Д. Мартином (1934—37), советским физиком В. Л. Гинзбургом (1948) и другими. Причина Люксембург — Горьковского эффекта сводится к следующему: поглощение радиоволн в ионосфере определяется её проводимостью, которая, в свою очередь, зависит от числа соударений имеющихся в ионосфере электронов с молекулами и ионами. Число соударений пропорционально скорости электронов, которая при отсутствии радиоволн определяется только температурой газа. Средняя тепловая скорость электронов u очень велика (например, при комнатной температуре u = 107 см/сек), поэтому даже при наличии в ионосфере радиоволн u обычно остаётся практически неизменной. Однако над мощной радиостанцией, где напряжённость поля радиоволны велика, скорость электронов, а значит число соударений и проводимость газа зависят от напряжённости поля (проводимость газа тем меньше, чем больше напряжённость поля) и меняются во времени в такт с изменениями напряжённости поля мощной станции. Радиоволны других радиостанций, проходящие через возмущённую область ионосферы, поглощаются то больше, то меньше, то есть оказываются промодулированными по амплитуде с частотой мощной станции. Возмущения, вызываемые в ионосфере мощной волной, сказываются не только на других волнах, распространяющихся в возмущённой области, но и на самой волне, вызвавшей эти возмущения. Возникает «самовоздействие» радиоволны в ионосфере. Оно изменяет её поглощение и фазу, то есть вызывает искажение сигнала.
 

 

Литература

1. Прохоров А.М. Физическая энциклопедия М.: Большая Российская энциклопедия. Т.4., 1994.

2. Гинзбург В.Л. Теория распространения радиоволн в ионосфере. УФН,1946 г. вып 2-3

3. Альперт Я.Л. Распространения электромагнитных волн и ионосфера. М.:наука,1972

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина