Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Электростатическая энергия атомных ядер
Электростатическая энергия атомных ядер

Описание

Масса ядра mЯ всегда меньше суммы масс входящих в него частиц. Это обусловлено тем, что при объединении нуклонов в ядро выделяется энергия связи нуклонов друг с другом.
Энергия покоя частицы связана с ее массой соотношением . Следовательно, энергия покоящегося ядра меньше суммарной энергии невзаимодействующих покоящихся нуклонов на величину
. (1)
Эта величина и есть энергия связи нуклонов в ядре. Она равна той работе, которую нужно совершить, чтобы разделить образующие ядро нуклоны и удалить их друг от друга на такие расстояния, при которых они практически не взаимодействуют друг с другом.
Соотношение (1) практически не нарушится, если заменить массу протона mP массой атома водорода mН, а массу ядра mЯмассой атома ma. Действительно, если пренебречь сравнительно ничтожной энергией связи электронов с ядрами, указанная замена будет означать добавление к уменьшаемому и вычитаемому выражения, стоящего в скобках, одинаковой величины, равной . Итак, формуле (1) можно придать вид
. (2)
Последняя формула удобнее, чем (1), потому что в таблицах обычно даются не массы ядер, а массы атомов.
Энергия связи, приходящаяся на один нуклон, т. е. Eсв/A, называется удельной энергией связи в ядре.
Энергия связи Eсв/A зависит от массового числа А. В грубом приближении можно считать, что удельная энергия связи ядер почти не зависит от массового числа А и равна примерно 8 МэВ. Приблилиженная зависимость удельной энергии связи от А означает, что ядерные силы обладают свойством насыщения. Оно заключается в том, что каждый нуклон взаимодействует только с ограниченным числом соседних нуклонов. Иначе бы удельная энергия связи линейно зависела от А (если бы каждый нуклон взаимодействовал со всеми остальными, то энергия этого взаимодействия была бы пропорциональна А–1). Благодаря насыщению ядерных сил плотность ядерного вещества внутри ядра однородна. Именно поэтому линейный размер ядра с массовым числом А пропорционален А1/3 в соответствии с уравнением
фм,
где 1 фм = 10-13 см.
Отсюда также следует, что ядерные силы являются короткодействующими с радиусом порядка среднего расстояния между нуклонами в ядре (~10-13 см).
 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

На протяжении всего XIX века химия, основанная на атомно-молекулярной теории, не могла дать никаких объяснений природе связи между атомами. Понятие валентности, при всей плодотворности его применения, оставалось сугубо эмпирическим. Лишь после открытия делимости атома и установления природы электрона как составной части атома возникли реальные предпосылки для разработки первых теорий химической связи.
Немецкие учёные Рихард Вильгельм Генрих Абегг и Гвидо Бодлендер в 1899 г. высказали идею о сродстве атомов к электрону – способности атомов присоединять электрон: "Вследствие того, что для существования неорганических соединений сродство атомов или отдельных групп к электрическому заряду оказывается гораздо более важным, нежели сродство их друг к другу, кажется вполне целесообразным принять за основу систематики неорганических веществ именно это сродство элементов и радикалов к электричеству...".
На основе этих представлений Абегг в 1904 г. разработал теорию электровалентности. Валентностью, по мнению Абегга, обладают ионы, и величина валентности равна заряду иона. Каждый элемент характеризуется двумя максимальными валентностями – положительной и отрицательной, сумма которых равна восьми. Одна из них, производящая более сильное действие, нормальная, другая – контрвалентность.
Следует отметить, что формулы высших оксидов и водородных соединений, приводимые Менделеевым в своей таблице, аналогичны построениям Абегга.
Все дальнейшие попытки объяснения природы валентных сил находились в тесной связи с представлениями о строении атома.

Реализации эффекта

Ядро представляет собой центральную часть атома. В нем сосредоточены положительный электрический заряд и основная часть массы атома; по сравнению с радиусом электронных орбит размеры ядра чрезвычайно малы: 10-15 - 10-14 м. Ядра всех атомов состоят из протонов и нейтронов, имеющих почти одинаковую массу, но лишь протон несет электрический заряд. Полное число протонов называется атомным номером Z атома, который совпадает с числом электронов в нейтральном атоме. Ядерные частицы (протоны и нейтроны), называемые нуклонами, удерживаются вместе очень большими силами; по своей природе эти силы не могут быть ни электрическими, ни гравитационными, а по величине они на много порядков превышают силы, связывающие электроны с ядром. Первое представление об истинных размерах ядра давали опыты Резерфорда по рассеянию альфа-частиц в тонких металлических фольгах. Частицы глубоко проникали сквозь электронные оболочки и отклонялись, приближаясь к заряженному ядру. Эти опыты явно свидетельствовали о малых размерах центрального ядра и указали на способ определения ядерного заряда. Резерфорд установил, что альфа-частицы приближаются к центру положительного заряда на расстояние примерно 10-14 м, а это позволило ему сделать вывод, что таков максимально возможный радиус ядра. На основе таких предположений Бор построил свою квантовую теорию атома, успешно объяснившую дискретные спектральные линии, фотоэффект, рентгеновское излучение и периодическую систему элементов. Однако в теории Бора ядро рассматривалось как положительный точечный заряд. Ядра большинства атомов оказались не только очень малы - на них никак не действовали такие средства возбуждения оптических явлений, как дуговой искровой разряд, пламя и т.п. Указанием на наличие некой внутренней структуры ядра явилось открытие в 1896 А. Беккерелем радиоактивности. Оказалось, что уран, а затем и радий, полоний, радон и т.п. испускают не только коротковолновое электромагнитное излучение, рентгеновское излучение и электроны (бета-лучи), но и более тяжелые частицы (альфа-лучи), а они могли исходить лишь из массивной части атома. Резерфорд использовал альфа-частицы радия в своих опытах по рассеянию, которые послужили основой формирования представлений о ядерном атоме. (В то время было известно, что альфа-частицы - это атомы гелия, лишенные своих электронов; но на вопрос - почему некоторые тяжелые атомы спонтанно испускают их, ответа еще не было, как не было и точного представления о размерах ядра.)

 

Измерения масс "каналовых лучей", проведенные Дж.Томсоном, Ф.Астоном и другими исследователями с помощью более совершенных масс-спектрометров и с большей точностью, дали ключ к строению ядра, а также атома в целом. Например, измерение отношения заряда к массе показало, что заряд ядра водорода, по-видимому, представляет собой единичный положительный заряд, численно равный заряду электрона, а масса mp = 1837me, где me - масса электрона. Гелий мог давать ионы с двойным зарядом, но его масса в 4 раза превышала массу водорода. Таким образом, высказанная ранее В.Праутом гипотеза о том, что все атомы построены из атомов водорода, была серьезно поколеблена. Сравнивая на своем масс-спектрографе массу атома неона с известными массами других элементов, Томсон в 1912 неожиданно обнаружил, что неону вместо одной соответствуют две параболы. Расчеты масс частиц показали, что одна из парабол отвечает частицам с массой 20, а другая - с массой 22. Это явилось первым свидетельством того, что атомы определенного химического элемента могут иметь различные массовые числа. Поскольку измеренное (среднее) массовое число оказалось равным 20,2, Томсон высказал предположение, что неон состоит из атомов двух типов, на 90% с массой 20 и на 10% с массой 22. Поскольку оба типа атомов в природе существуют в виде смеси и их нельзя разделить химическим путем, массовое число неона оказывается равным 20,2. Наличие двух типов атомов неона наводило на мысль о том, что и другие элементы могут представлять собой смеси атомов. Последующие масс-спектрометрические измерения показали, что большинство природных элементов представляют собой смеси от двух до десяти различных сортов атомов. Атомы одного и того же элемента с различной массой называют изотопами. У некоторых элементов существует только один изотоп, что требовало теоретического объяснения, как и факт разной распространенности элементов, а также существование радиоактивности лишь у определенных веществ. В связи с открытием изотопов возникла проблема стандартизации, поскольку химики ранее выбрали в качестве стандарта "кислород" (16,000000 атомных единиц массы), оказавшийся смесью четырех изотопов. В итоге было решено установить "физическую" шкалу масс, в которой наиболее распространенному изотопу кислорода приписывалось значение 16,000000 а.е.м. Однако в 1961 между химиками и физиками было достигнуто соглашение, согласно которому наиболее распространенному изотопу углерод-12 были приписаны 12,00000 а.е.м. Поскольку число атомов в 1 моле изотопа равно числу Авогадро N0, получаем
1 а.е.м. = 1/No = 1.66.10-27кг.
Отметим, что в атомную единицу массы входит масса одного электрона, а масса самого легкого изотопа водорода почти на 1% больше 1 а.е.м.

 

Литература

1.Савельев И. В. Курс общей физики: Учебное пособие. В 3-х тт. Т. 3. Квантовая оптика. Атомная физика. Физика твердого тела. Физика атомного ядра и элементарных частиц. – 320 стр. Стр. 234.

2. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина