Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Магнитооптический Керра эффект.
Магнитооптический Керра эффект.

Описание

В 1876 Керром было обнаружено магнитооптическое явление (магнитооптический эффект Керра) при наблюдении отражения света от полированной поверхности полюса магнита. Магнитооптический эффект Керра состоит в том, что плоско поляризованный свет, отражаясь от намагниченного ферромагнетика, становится эллиптически поляризованным; при этом большая ось эллипса поляризации поворачивается на некоторый угол по отношению к плоскости поляризации падающего света. Падающий свет при наблюдении магнитооптического эффекта Керра должен быть поляризован в плоскости падения либо нормально к ней, так как при всякой другой поляризации явление осложняется появлением эллиптичности поляризации, вызванной отражением от металлической (ненамагниченной) поверхности.
На рис.1 представлена геометрия экваториального магнитооптического эффекта Керра
Экваториальный магнитооптический эффект Керра
Рис.1
На рис.2 представлена геометрия меридионального магнитооптического эффекта Керра
Меридиональный магнитооптический эффект Керра
Рис.2
На рис.3 представлена геометрия полярного магнитооптического эффекта Керра
Полярный магнитооптический эффект Керра
Рис.3
 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Интерес к эффектам Керра и Фарадея обусловлен их применением в физике, оптике и электронике. К ним относятся:
* определение эффективной массы носителей заряда или их плотности в полупроводниках;
* амплитудная модуляция лазерного излучения для оптических линий связи и определение времени жизни неравновесных носителей заряда в полупроводниках;
* изготовление оптических невзаимных элементов;
* визуализация доменов в ферромагнитных пленках;
* магнитооптическая запись и воспроизведение информации как в специальных, так и бытовых целях.
 

Реализации эффекта

Эффект Керра – возникновение двойного лучепреломления в оптически изотропных веществах, например жидкостях и газах, под воздействием однородного электрического поля. Открыт Дж. Керром в 1875. В результате эффекта Керра газ или жидкость в электрическом поле приобретает свойства одноосного кристалла оптическая ось которого направлена вдоль поля.
Схема установки для наблюдения эффекта Керра
Схема установки для наблюдения эффекта Керра
Рисунок 1
Стрелки показывают направление электрического поля E.
Для наблюдения эффекта Керра монохроматический свет пропускают через поляризатор П (например, призму Николя) и направляют в плоский конденсатор, заполненный изотропным веществом (ячейка Керра, смотрите рисунок 1). Поляризатор преобразует естественно поляризованный свет в линейно поляризованный. Если к обкладкам конденсатора не приложено напряжение, то поляризация света, проходящего через вещество, не изменяется и свет полностью гасится второй призмой Николя А, повёрнутой на 90° по отношению к первой (анализатором). Если к обкладкам приложено напряжение, то линейно поляризованная световая волна в веществе распадается на две волны, поляризованные вдоль поля Ен (необыкновенная волна) и под прямым углом к полю Е0 (обыкновенная волна), которые распространяются с разными скоростями. Из–за разной скорости распространения фазы колебаний электрического вектора у необыкновенной волны Ен и обыкновенной Е0 волн по выходе из ячейки не совпадают, в результате чего результирующая световая волна оказывается эллиптически поляризованной и частично проходит через анализатор. Если между ячейкой Керра и анализатором А поставить компенсатор К, преобразующий эллиптически поляризованный свет в линейно поляризованный, то поворотом компенсатора можно снова добиться полного гашения света анализатором. Зная угол поворота компенсатора, можно вычислить величину двойного лучепреломления: Dn = nн – no,
где nн и no,– показатели преломления для необыкновенной и обыкновенной волн.
Величина двойного лучепреломления прямо пропорциональна квадрату напряжённости электрического поля: Δn = nkE2(закон Керра). Здесь n – показатель преломления вещества в отсутствии поля, k – постоянная Керра. Постоянной Керра называют также величину В = nkl (l – длина световой волны). Постоянные Керра k и В могут быть положительными или отрицательными. Их величины зависят от агрегатного состояния вещества, температуры, а также от структуры молекул вещества. Для газов k ~ 10–15 СГСЕ. Для жидкостей k ~ 10–12 СГСЕ. Ещё большими значениями постоянных Керра характеризуются растворы жёстких макромолекул и коллоидные растворы.
Объяснение эффекта Керра было дано П. Ланжевеном (1910) и М. Борном (1918). Электрическое поле стремится повернуть молекулы вещества так, чтобы их электрический дипольный момент был направлен вдоль поля Е. Электрическое поле не только ориентирует молекулы, но и создаёт в молекулах дополнительный дипольный момент. Это существенно, например, для инертных газов, атомы которых в отсутствии поля не обладают дипольным моментом. В результате действия поля в веществе возникает определённая ориентация частиц. При этом условия распространения в веществе световых волн, поляризованных вдоль и поперёк поля, оказываются различными. Тепловое движение препятствует ориентации атомов и молекул, поэтому постоянная Керра убывает с ростом температуры. Измеряя постоянные Керра, можно вычислить эллипсоид оптической поляризуемости, что позволяет получить важную информацию о структуре молекул.
В переменном электрическом поле эффект Керра зависит от скорости переориентации молекул при изменении знака поля. Эта скорость для низкомолекулярных жидкостей очень велика (времена изменения ориентации < 10–9 сек). Поэтому при частоте электрического поля < 109 Гц интенсивность света, проходящего через анализатор, будет следовать за колебаниями электрического поля (с удвоенной частотой) практически без запаздывания. Таким образом, ячейка Керра может работать как модулятор светового потока, что имеет важное прикладное значение.

Литература

1. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.

2. Соколов А. В., О магнетооптических явлениях в ферромагнетиках, «Успехи физических наук», 1953, т. 50, в. 2, с. 161

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина