Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Электролитическая диссоциация
Распад вещества на ионы при растворении

Описание

Электролитическая диссоциация – распад вещества на ионы при растворении. Диссоциация на ионы происходит вследствие взаимодействия растворенного вещества с растворителем. По данным спектроскопических методов, это взаимодействие носит в значительной мере химический характер. Наряду с сольватирующей способностью молекул растворителя определенную роль в электролитической диссоциации играет также макроскопическое свойство растворителя – его диэлектрическая проницаемость.
Классическая теория электролитической диссоциации была создана С.Аррениусом и В.Оствальдом в 80-х гг. 19 в. Она основана на предположении о неполной диссоциации растворённого вещества, характеризуемой степенью диссоциации α, т. е. долей распавшихся молекул электролита. Динамическое равновесие между недиссоциированными молекулами и ионами описывается законом действующих масс. Например, электролитическая диссоциация бинарного электролита КА выражается уравнением типа:
КА <-> К+ + А-.
Константа диссоциации Кд определяется активностями катионов аК+, анионов аА- и недиссоциированных молекул аКА следующим образом:
КдКА- / аКА
Значение Кд зависит от природы растворённого вещества и растворителя, а также от температуры и может быть определено несколькими экспериментальными методами. Степень диссоциации (α) может быть рассчитана при любой концентрации электролита с помощью соотношения:
Кд= α2 с f± / 1 – α
где f±средний коэффициент активности электролита.
Классическая теория электролитической диссоциации применима лишь к разбавленным растворам слабых электролитов. Сильные электролиты в разбавленных растворах диссоциированы практически полностью, поэтому представления о равновесии между ионами и недиссоциированными молекулами лишено смысла. Согласно представлениям, выдвинутым в 20–30-х гг. 20 в. В. К. Семенченко (СССР), Н. Бьеррумом (Дания), Р. М. Фуоссом (США) и др., в растворах сильных электролитов при средних и высоких концентрациях образуются ионные пары и более сложные агрегаты. Современные спектроскопические данные показывают, что ионная пара состоит из двух ионов противоположного знака, находящихся в контакте («контактная ионная пара») или разделённых одной или несколькими молекулами растворителя («разделённая ионная пара»). Ионные пары электрически нейтральны и не принимают участия в переносе электричества. В сравнительно разбавленных растворах сильных электролитов равновесие между отдельными сольватированными ионами и ионными парами может быть приближённо охарактеризовано, аналогично классической теории электролитической диссоциации, константой диссоциации (или обратной величиной – константой ассоциации). Это позволяет использовать вышеприведенное уравнение для расчёта соответствующей степени диссоциации, исходя из экспериментальных данных.
В простейших случаях (большие одноатомные однозарядные ионы) приближённые значения константы диссоциации в разбавленных растворах сильных электролитов можно вычислить теоретически, исходя из представлений о чисто электростатическом взаимодействии между ионами в непрерывной среде — растворителе.
В 1888г. был выведен закон разбавления Оствальда. Экспериментальное установление правильности закона разбавления Оствальда имело большое значение для обоснования теории электролитической диссоциации. Закон гласит, что соотношение, выражающее зависимость эквивалентной электропроводности разбавленного раствора бинарного слабого электролита от концентрации раствора выглядит следующим образом:
K=cλ2-λ)
здесь К — константа диссоциации электролита, с — концентрация, λ и λ — значения эквивалентной электропроводности соответственно при концентрации с и при бесконечном разбавлении. Соотношение является следствием закона действующих масс и равенства
λ / λ = α
где α — степень диссоциации.
 

 

 

Ключевые слова

 

Разделы наук

 

Используется в научно-технических эффектах

Гидролизный аппарат (Гидролизный аппарат)
Топливный элемент (Топливный элемент)

 

Используется в областях техники и экономики

1Технологии органических веществ и продуктов
1Технологии неорганических веществ и продуктов
1Технологии и техника обогащения полезных ископаемых
1Молекулярная электроника
2Источники тока
1Электрические машины
1Автомобилестроение
1Водородная энергетика

 

Используются в научно-технических эффектах совместно с данным эффектом естественнонаучные эффекты

1Выпадение коллоидных частиц в осадок после добавления в раствор соли (Высаливание коллоидных частиц)
2Распад вещества на ионы при растворении (Электролитическая диссоциация)
1Спонтанный переход тлеющего разряда в дуговой (Спонтанный переход тлеющего разряда в дуговой)
1Эффект Дорна (Эффект Дорна)
2Гальванические элементы и аккумуляторы (Гальванические элементы и аккумуляторы)
1Перенос массы в жидких металлах, индуцированный электрическим полем (Электродиффузия)
1Диэлектрики. Поведение в электрическом поле. Ориентационная поляризуемость диэлектриков. Вывод для величины ориентационной поляризуемости. (Поляризуемость ориентационная.)
1Поляризация диэлектрика. Дипольный момент. Виды поляризации. Атомная поляризуемость. (Поляризуемость атомная.)
1Поляризация диэлектрика. Дипольный момент. Виды поляризации. Ионная поляризуемость. (Поляризуемость ионная.)

 

Применение эффекта

По степени диссоциации на ионы электролиты стали относить к сильным (полный распад на ионы) и к слабым (на ионы распадается только часть растворенного вещества). К сильным электролитам относятся щелочи, многие кислоты (серная, азотная, соляная), большинство солей. К слабым электролитам относятся уксусная СН3СООН, азотистая HNO2, сероводородная H2S, угольная Н2СО3, сернистая H2SO3, большинство органических кислот, которые в свою очередь широко используются в промышленности, косметологии, фармакологии и др. Воду также можно отнести к слабым электролитам, так как лишь очень небольшая часть ее молекул находится в растворах в виде катионов Н+ и анионов ОН. Фосфорная кислота Н3РО4 – электролит средней силы.
Тело человека также содержит растворы электролитов и проводит электрический ток. Прохождение через тело тока силой всего 0,1 ампера может быть смертельным.
Если два различных металла погрузить в раствор электролита, то между ними возникает электрическое напряжение. Такая система составляет гальванический элемент. Он широко используется в аккумуляторах, батареях и в других источниках электрического тока.

 

Реализации эффекта

Сольватация - взаимодействие молекул растворенного вещества (или их ассоциатов) с молекулами растворителя. Приводит к изменению свойств молекул в растворе (в сравнении со свойствами газовой фазы), влияет на все физические и физико-химические процессы, протекающие в растворах, в т.ч. определяет скорость реакций в растворах и положение равновесия, а в ряде случаев и их механизм. Сольватация в водных средах часто называют гидратацией. Наиболее интенсивна сольватация ионов в растворах электролитов.
Сольватация состоит в том, что молекула растворенного вещества оказывается окруженной сольватной оболочкой, состоящей из более или менее тесно связанных с ней молекул растворителя. В результате сольватации образуются сольваты - молекулы образования постоянного или переменного состава. Время жизни сольватов определяется характером и интенсивностью межмолекулярных взаимодействий; даже в случае сильного взаимодействия время жизни отдельного сольвата мало из-за непрерывного обмена частицами в сольватной оболочке. В соответствии с типами межмолекулярных взаимодействий выделяют неспецифическую и специфическую сольватации. Неспецифическая сольватация обусловлена ван-дер-ваальсовыми взаимодействием, специфическая сольватация проявляется гл. обр. вследствие электростатического взаимодействия, координационных и водородных связей.
Важнейшие термодинамические характеристики сольватации - энтальпия сольватации ΔHc и энергия Гиббса сольватации (свободная энергия сольватации) ΔGc, связанные соотношением:
ΔGc = ΔHc-ТΔSc,
где ΔSc - энтропия сольватации, T - абсолютная  температура. Энтальпия сольватации определяет тепловой эффект внедрения молекулы растворенного вещества в растворитель; энергия Гиббса сольватации определяет растворимость вещества.

При растворении соединений с ионными связями (например, NaCl) процесс гидратации начинается с ориентации диполей воды вокруг всех выступов и граней кристаллов соли.
Ориентируясь вокруг ионов кристаллической решетки, молекулы воды образуют с ними либо водородные, либо донорно-акцепторные связи. При этом процессе выделяется большое количество энергии, которая называется энергией гидратации.
Энергия гидратации, величина которой сравнима с энергией кристаллической решетки, идет на разрушение кристаллической решетки. При этом гидратированные ионы слой за слоем переходят в растворитель и, перемешиваясь с его молекулами, образуют раствор.

 

Аналогично диссоциируют и вещества, молекулы которых образованы по типу полярной ковалентной связи (полярные молекулы). Вокруг каждой полярной молекулы вещества (например, HCl), определенным образом ориентируются диполи воды. В результате взаимодействия с диполями воды полярная молекула еще больше поляризуется и превращается в ионную, далее уже легко образуются свободные гидратированные ионы.

 

Литература

1. Химия: Справ. Изд./В. Шретер, К.-Х. Лаутеншлегер, Х. Бибрак и др.: Пер. с нем. – М.: Химия, 1989. – 648 с.ил. стр. 166.

2. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина