Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Холла квантовый эффект
Холла квантовый эффект

Описание

Квантовый эффект Холла — эффект квантования холловского сопротивления или проводимости двумерного электронного газа в сильных магнитных полях и при низких температурах. Квантовый эффект Холла (КЭХ) был открыт Клаусом фон Клитцингом (совместно с Г. Дордой и М. Пеппером) в 1980 году, за что впоследствии в 1985 году он получил Нобелевскую премию.
Эффект состоит в том, что при достаточно низких температурах в сильных магнитных полях на зависимости поперечного сопротивления (отношения возникающего поперечного напряжения к протекающему продольному току) вырожденного двумерного электронного газа (ДЭГ) от величины нормальной составляющей к поверхности ДЭГ индукции магнитного поля (или от концентрации при фиксированном магнитном поле) наблюдаются участки с неизменным поперечным сопротивлением или «плато».
Фон Клитцинг обнаружил так называемый нормальный (или целочисленный) квантовый эффект Холла (КЭХ), когда, значения сопротивления на «плато» равно ρxy = h/ve2, где e — заряд электрона, h — постоянная Планка, ν — натуральное число (называемое фактором заполнения уровней Ландау) (рис. 1).
Зависимости холловского сопротивления и удельного сопротивления от магнитного поля при постоянной концентрации носителей. На зависимости холловского сопротивления наблюдаются «плато»
 
Рис.1
Для наблюдения КЭХ существует ряд условий, которые должны выполняться, чтобы квантование было точным.
Как было замечено Клитцингом при измерении эффекта Холла в инверсном слое кремниевого МОП транзистора при низких температур (Т ~ 1 K) и в сильных магнитных полях (B > 1 Тл) линейная зависимоть холловского сопротивления сменяется чередой ступеней (плато) как показано на Рис.2. Величина сопротивления на этих ступеньках равна комбинации фундаментальных физических констант, деленной на целое число ν:
RH = h/ve2.
Когда на зависимости холловского сопротивления RH наблюдается плато, продольное электрическое сопротивление становится очень малой величиной (оно равно нулю с высокой экспериментальной точностью). При низких температурах ток в образце может течь без диссипации (рассеяния).
Прецизионные измерения также показали, что на точности квантования RH не сказываются такие существенные параметры эксперимента, как размеры образцов, влияние границ и важное в обычном эффекте Холла закорачивание холловского напряжения омическими контактами, а также степень совершенства структур, то есть наличие большого количества примесей и дефектов, тип материала, в котором находится 2D-электронный газ, температура и сила измерительного тока. Экспериментальная точность квантования так высока, что встал вопрос о метрологических применениях КЭХ: проверке формул квантовой электродинамики с помощью прецизионного определения постоянной тонкой структуры или создания нового эталона сопротивления.
Зависимости холловского сопротивления от магнитного поля. На зависимости холловского сопротивления указаны факторы заполнения для некоторых «плато».
Рис.2
 
 

 

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Уже первая работа по КЭХ, названная «Новый метод определения постоянной тонкой структуры с высокой точностью по квантованию холловского сопротивления» показала, что возможно его применение в качестве стандарта сопротивления. В настоящее время известно, что значения квантованного сопротивления Холла не зависят от качества образца и его материала. Поэтому, начиная с 1990 года, калибровки сопротивлений основаны на КЭХ с фиксированным значением Rэ = 25812,807 Ом.
В 1982 году Д. Цуи и Х. Штёрмер открыли дробный квантовый эффект Холла (фактор заполнения при этом становится меньше единицы).

Реализации эффекта

Для наблюдения эффекта гетероструктуру со сформированным двумерным электронным газом помещают в однородное магнитное поле, перпендикулярное плоскости электронного газа. При пропускании тока через образец измеряют ток, а также возникающее напряжение вдоль и поперек образца (рис.1).
Геометрия измерения квантового эффекта Холла. RH=V2/I
Рис.1

 

Квантовый эффект Холла в графене или необычный квантовый эффект Холла — эффект квантования холловского сопротивления или проводимости двумерного электронного газа или двумерного дырочного газа в сильных магнитных полях в графене. Этот эффект был предсказан теоретически и подтверждён экспериментально в 2005 году.
Впервые необычный (англ. unconventional) квантовый эффект Холла наблюдали экспериментально, и было показано, что носители в графене действительно обладают нулевой эффективной массой, поскольку положения плато на зависимости недиагональной компоненты тензора проводимости соответствовали полуцелым значениям холловской проводимости v = ±(|n|+1/2) в единицах 4e2/h (множитель 4 появляется из-за четырёхкратного вырождения энергии), то есть
Это квантование согласуется с теорией квантового эффекта Холла для дираковских безмассовых фермионов. Сравнение целочисленного квантового эффекта Холла в обычной двумерной системе и графене показано на рисунке 1. Здесь показаны уширенные уровни Ландау для электронов (выделение красным цветом) и для дырок (синий цвет). Если уровень Ферми находится между уровнями Ландау, то на зависимости холловской проводимости σxy наблюдается ряд плато. Эта зависимость отличается от обычных двумерных систем (аналогом может служить двумерный электронный газ в кремнии, который является двухдолинным полупроводником в плоскостях эквивалентных {100}, то есть тоже обладает четырёхкратным вырождением уровней Ландау и холловские плато наблюдаются при ν = 4 | n | ).
Квантовый эффект Холла (КЭХ) может использоваться как эталон сопротивления, потому что численное значение наблюдаемого в графене плато равное h/2e2 выполняется с хорошей точностью, хотя качество образцов уступает высокоподвижному ДЭГ в GaAs, и, соответственно, точности квантования. Преимущество КЭХ в графене в том, что он наблюдается при комнатной температуре (в магнитных полях свыше 20 Т). Основное ограничение на наблюдение КЭХ при комнатной температуре накладывает не само размытие распределения Ферми-Дирака, а рассеяние носителей на примесях, что приводит к уширению уровней Ландау.
a) Квантовый эффект Холла в обычной двумерной системе. b) Квантовый эффект Холла в графене. g = gsgv = 4 — вырождение спектра
Рис. 1

 

Литература

1. Гирвин С.М., Квантовый эффект Холла: Необычные возбуждения и нарушенные симметрии: Перевод с английского "Институт компьютерных исследований" 2003, 156 стр.

2. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина