Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Конвективный теплообмен
Необратимый процесс переноса теплоты в движущихся средах с неоднородным полем температуры, обусловленный совместным действием конвекции и молекулярного движения

Анимация

Описание

Конвективный теплообмен - необратимый процесс переноса теплоты в движущихся средах с неоднородным полем температуры, обусловленный совместным действием конвекции и молекулярного движения.
Наиболее, важный для практики случай – конвективный теплообмен между движущейся средой и поверхностью её раздела с другой средой (твёрдым телом, жидкостью или газом) – называется конвективной теплоотдачей. Вследствие вязкости движущейся среды она «прилипает» к поверхности раздела, в результате местная скорость среды относительно этой поверхности равна нулю. Поэтому плотность конвективного теплового потока, подходящего к поверхности раздела (или отходящего от неё), может быть описана с помощью закона теплопроводности (закона Фурье):
где λ – коэффициент молекулярной теплопроводности, Т – температура среды. Если λ характеризует физические свойства среды, то градиент температуры формируется под действием конвективного движения среды. Чем интенсивнее конвекция, тем больше градиент температуры.
Основными факторами, влияющими на процесс теплоотдачи являются следующие:
1) Природа возникновения движения жидкости вдоль поверхности стенки. Самопроизвольное движение жидкости (газа) в поле тяжести, обусловленное разностью плотностей её горячих и холодных слоев, называют свободным движением (естественная конвекция). Движение, создаваемое вследствие разности давлений, которые создаются насосом, вентилятором и другими устройствами, называется вынужденным (вынужденная конвекция).
2) Режим движения жидкости. Упорядоченное, слоистое, спокойное, без пульсаций движение называется ламинарным. Беспорядочное, хаотическое, вихревое движение называется турбулентным.
3) Физические свойства жидкостей и газов. Большое влияние на конвективный теплообмен оказывают следующие физические параметры:
 - коэффициент теплопроводности,
 - удельная теплоемкость,
 - плотность,
 - коэффициент динамической вязкости,
 - температурный коэффициент объемного расширения.
4) Форма (плоская, цилиндрическая), размеры и положение поверхности (горизонтальная, вертикальная).
Основной и наиболее трудной проблемой в расчётах процессов конвективной теплоотдачи является нахождение коэффициента теплоотдачи λ . Современные методы описания процесса конвективного теплообмена, основанные на теории пограничного слоя, позволяют получить теоретические (точные или приближённые) решения для некоторых достаточно простых ситуаций. В большинстве же встречающихся на практике случаев коэффициент теплоотдачи определяют экспериментальным путём. При этом как результаты теоретических решений, так и экспериментальные данные обрабатываются методами подобия теории и представляются обычно в следующем безразмерном виде:
Nu = f (Re, Pr) — для вынужденной конвекции
и
Nu = f (Gr, Pr) — для свободной конвекции,
где Nu=αL/λНуссельта число, α — безразмерный коэффициент теплоотдачи (L — характерный размер потока, λ — коэффициент теплопроводности); Re - Рейнольдса число, характеризующее соотношение сил инерции и внутреннего трения в потоке; PrПрандтля число, определяющее соотношение интенсивностей термодинамических процессов; Gr =gL3βΔT/v2Грассхофа число, характеризующее соотношение архимедовых сил, сил инерции и внутреннего трения в потоке (g — ускорение свободного падения, β — термический коэффициент объёмного расширения).
Процессы конвективного теплообмена чрезвычайно широко распространены в технике (энергетике, холодильной технике, ракетной технике, металлургии, химической технологии), а также в природе (перенос тепла в атмосфере, в морях и океанах).

 

Ключевые слова

 

Разделы наук

 

Используется в научно-технических эффектах

Устройство для рассеивания тепла (Радиатор)

 

Используется в областях техники и экономики

1Бытовая техника
1Автомобилестроение
1Двигателестроение

 

Используются в научно-технических эффектах совместно с данным эффектом естественнонаучные эффекты

1Необратимый процесс переноса теплоты в движущихся средах с неоднородным полем температуры, обусловленный совместным действием конвекции и молекулярного движения (Конвективный теплообмен)
1Перенос энергии в пограничном слое (Перенос энергии в пограничном слое)
1Перенос теплоты в результате непосредственного контакта частиц вещества при наличии градиента температуры (Теплопроводность)
1Перенос энергии от более нагретых участков тела к менее нагретым в результате теплового движения и взаимодействия составляющих его частиц (Теплопроводность. Закон Фурье)

 

Применение эффекта

Микроклимат помещения характеризуется комплексом параметров, определяющих тепловое состояние помещения и газовый состав воздуха в нем. Параметры микроклимата формируются под воздействием на помещение потоков теплоты, влаги, газовых примесей.
Перечисленные потоки поступают в помещение через наружные ограждения из наружной среды, через внутренние ограждения из соседних помещений здания и от внутренних источников (рис.1.), действующих в технологическом процессе. При взаимодействии с объемом помещения потоки трансформируются и преобразуются, вызывая изменение соответствующих параметров микроклимата. Отклонение параметров от заданных значений компенсируется системами отопления-охлаждения и вентиляции, которые, в свою очередь, также подают в помещение потоки тепла, влаги и свежий воздух, нейтрализующие вредные воздействия на микроклимат.
Процессы трансформации потоков тепла, влаги и воздуха, в результате которых происходит изменение параметров микроклимата, и есть процессы формирования микроклимата. Можно выделить три группы физических процессов формирования микроклимата, протекающих в помещении - это процессы теплообмена, процессы перемещения потоков воздуха и процессы молекулярной диффузии газовых примесей в воздухе помещения.
Совокупность процессов формирования отдельных параметров или групп параметров называют режимом. При рассмотрении задач обеспечения микроклимата обычно имеют дело с тепловым, влажностным, воздушным и газовым режимом помещения или здания.
Схема вертикального перемещения потоков воздуха в здании
Рис.1.
Перемещение потоков в помещении
Рис.2.
Теплообмен в помещении обусловлен поступлением в него тепловых потоков, которые принято условно разделять по их природе на лучистые и конвективные. Конвективный теплообмен протекает (рис. 2) между поверхностями ограждений и оборудования и воздухом помещения. Помимо этого, в помещение поступают конвективные тепловые потоки с нагретым (охлажденным) воздухом в основном от систем вентиляции и кондиционирования воздуха. В лучистом теплообмене участвуют поверхности, обращенные в помещение (рис.2).
Теплоообмен конвекцией часто встречается в быту. Например, отопительные батареи-радиаторы располагаются вблизи пола под подоконником. Поэтому нагреваемый ими воздух, поднимаясь вверх, смешивается с холодным воздухом, опускающимся от окна. В результате в комнате устанавливается почти равномерная температура. Этого не происходило бы, если бы батареи располагались у потолка. Конвективные потоки возникают и внутри кастрюль с жидкостями, которые нагреваются на кухонной плите.

Реализации эффекта

Существует три вида теплообмена: теплопроводность, конвекция и лучистый теплообмен. Слово «конвекция» образовано от греческого слова convectio — доставка. Конвекция - это процесс теплопередачи, осуществляемый путем переноса энергии потоками жидкости или газа.
Явление конвекции можно объяснить законом Архимеда и явлением теплового расширения тел. При повышении температуры объем жидкости возрастает, а плотность уменьшается. Под действием архимедовых сил менее плотная нагретая жидкость поднимается вверх, а более плотная холодная жидкость опускается вниз. Если же жидкость нагревать сверх, то менее плотная теплая жидкость там и останется и конвекция не возникнет.
Так устанавливается круговорот жидкости, сопровождающийся переносом энергии от нагретых участков к более холодным. Совершенно аналогичным образом возникает конвекция в газах.
Горение спички
Рис.1.
На рисунке 1 вы видите тень руки с зажженной спичкой. Волнистые тени над пламенем - это струйки поднимающегося теплого воздуха. Такие тени легко получаются на стене темной комнаты при освещении спички фонариком.
Такой процесс часто называется естественной конвекцией. Для ее возникновения требуется подогрев жидкости снизу (или охлаждение сверху), причем нагрев в разных участках должен быть неравномерным.
Кроме естественной конвекции, возможна и принудительная конвекция. При принудительной конвекции потоки нагретой (или охлажденной) жидкости или газа переносятся под действием насосов или вентиляторов. Такая конвекция используется в тех случаях, когда естественная конвекция оказывается недостаточно эффективной, а также в состоянии невесомости, когда естественная конвекция невозможна.
Явление возникновения струй или потоков в нагреваемых или охлаждаемых жидкостях и газах называется конвекцией. Кроме того, с точки зрения термодинамики конвекция – это способ теплопередачи, при котором внутренняя энергия переносится потоками неравномерно нагретых веществ.
Явление конвекции весьма распространено в природе. Типичными примерами конвекции в атмосфере являются ветры, в частности бризы и муссоны. Нагреваясь над одними участками Земли и охлаждаясь над другими, воздух начинает циркулировать, перенося с собой энергию и влагу. Явление это весьма сложное. На процесс естественной конвекции накладывается ряд факторов, в частности суточное вращение Земли, рельеф местности, влияние морских течений и т. д. Но в основе ветрообразования лежит именно явление конвекции. Особенно прост и нагляден механизм возникновения берегового бриза. Днем суша прогревается быстрее воды, у которой теплоемкость очень велика. Поэтому температура суши выше температуры воды. Нагретый над сушей воздух поднимается вверх, на его место поступает холодный воздух с моря, и у поверхности Земли ветер дует с моря на берег. Ночью картина меняется на противоположную: земля быстрее остывает, вода сохраняет более высокую температуру, и ветер у поверхности Земли направлен с берега в сторону моря.
С явлением конвекции связаны процессы горообразования. В первом приближении земной шар можно рассматривать как систему, состоящую из трех концентрических слоев. Внутри находится массивное ядро, состоящее в основном из металлов (железа, никеля и т. п.) в виде очень плотной жидкой массы. Радиус ядра равен примерно 3500 км. Ядро окружают полужидкая мантия и литосфера общей толщиной около 2900 км, состоящие из горных пород в твердом состоянии (слово «литосфера» образовано от греческого lithos — камень и sphaira — шар). Самый верхний слой литосферы, толщиной в среднем 60—70 км,— это земная кора. Литосфера состоит из отдельных плит, которые как бы плавают на поверхности мантии. Дело в том, что вещество мантии находится под колоссальным давлением литосферы и приобретает за счет этого свойства очень вязкого, но все же текучего вещества. Вследствие неравномерного разогрева отдельных участков мантии, а также разной плотности горных пород в разных участках мантии в ней возникают конвективные потоки. Они вызывают перемещения литосферных плит, несущих континенты и ложа океанов. Там, где литосферные плиты расходятся, возникают океанические впадины. В других местах, где плиты сталкиваются и одна из них наползает на другую, образуются горные массивы. При этом возникают неустойчивые участки с очень болыними напряжениями — сейсмические зоны. При переходе этих участков в более устойчивое состояние происходят землетрясения. Вещество мантии обладает колоссальной вязкостью, поэтому скорость перемещения конвективных потоков в мантии очень мала. Соответственно мала и скорость перемещения литосферных плит (около 2—3 см за год). Однако за геологические эпохи порядка десятков миллионов лет литосферные плиты могут переместиться на сотни и тысячи километров.
С явлением конвекции связаны процессы  глобальной циркульции атмосферных масс воздуха. Все ветры вызваны конвекционными потоками, возникающими из-за того, что большая часть энергии Солнца попадает на Землю вблизи экватора. Когда воздух нагревается, он расширяется и поднимается, а взамен к экватору устремляется поток более холодного и плотного воздуха. Так образуется ветер.
С явлением конвекции связаны процессы парения птиц и планеро. Разные участки земной поверхности нагреваются неодинаково. Из-за этого неодинаково нагревается и воздух у поверхности. Более теплые и менее плотные массы воздуха создают восходящие потоки, в которых могут долго парить птицы и планеры.  Мастерство планериста заключается в умении находить такие потоки и с их помощью преодолевать большие расстояния.
С явлением конвекции связаны процесс  дымообразования из труб и кратеров вулкано. Дым  из печной трубы  или кратера вулкана имеет высокую температуру и низкую плотность, поэтому поднимается вверх. По мере остывания дым может  снова опускаться в нижние слои атмосферы. Вот почему трубы, через которые выбрасываются вредные вещества, стараются делать как можно более высокими.
С явлением конвекции связаны процесс  охлаждение продуктов вхолодильнике. Газ фреон, циркулирующий по трубкам холодильника,  охлаждает воздух в верхней части холодильной камеры. Холодный воздух, опускаясь, охлаждает продукты, а затем снова поднимается вверх. Раскладывая продукты в холодильнике, старайтесь не затруднять циркуляцию воздуха. Решетка сзади холодильника предназначается для отвода тепла, образующегося при сжатии газа в компрессоре.  Механизм ее охлаждения также конвективный, поэтому надо оставлять пространство за холодильником свободным для конвективных потоков. С явлением конвекции связана работа отопительной системы дома. Отопительная система жилого дома также работает с помощью конвекции. Горячая вода, поступающая в дом, или нагретая в котле, поднимается вверх, а затем спускается по трубам и распределяется по жилым помещениям,  отдавая тепло в радиаторах или конвекторах.

 

Литература

1. Эккерт Э.-Р., Дрейк Р.-М., Теория тепло- и массообмена, пер. с англ., М. — Л., 1961.

2. Гухман А. А., Применение теории подобия к исследованию процессов тепло- и массообмена, М., 1967.

3. Исаченко В. П., Осипова В. А., Сукомел А. С., Теплопередача, М., 1969.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина