Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Супермагнетизм
Квазипарамагнитное поведение систем, состоящая из совокупности мелких ферро- и ферримагнитных частиц

Описание

Супермагнетизм квазипарамагнитное поведение веществ (неоднородных сплавов), включающих очень малые ферро- или ферримагнитные частицы (кластеры), слабо взаимодействующие друг с другом. Очень малые частицы (с линейными размерами 100 – 10 Å и меньше) переходят ниже Кюри точки в однодоменное ферро- или ферримагнитное состояние (то есть такое состояние, при котором по всей частице намагниченность однородна). Однако направление намагниченности таких частиц благодаря тепловым флуктуациям хаотически изменяется, подобно тому, как меняется под воздействием теплового движения направление магнитных моментов атомов или ионов в парамагнетике. В результате система малых частиц ведёт себя в магнитных полях и при изменении температуры подобно парамагнитному газу из N атомов (N – число однодоменных частиц, каждая из которых обладает магнитным моментом М). Для неё выполняется закон Кюри в слабых магнитных полях и применима формула Ланжевена для намагниченности в области магнитного насыщения. Намагниченность суперпарамагнетиков может быть во много раз больше намагниченности обычных парамагнетиков. Чтобы векторы намагниченности частиц хаотически меняли свою пространственую ориентацию, энергия теплового движения (kT) должна быть больше или порядка энергии магнитной анизотропии частицы (KV, где К – константа анизотропии, V – объём частицы). Для этого при температурах равных 100К размер частиц должен быть меньше 100Å. Типичными представителями суперпарамагнитных систем являются малые частицы Со, выделяющиеся при распаде твердого раствора CuСо (2% Со), мелкие выделения Fe в β-латуни (0,1 % Fe), Cu в Mn, Ni в Au, а также некоторые антиферромагнитные окислы.
Если размер частицы достаточно мал, вероятность того, что магнитный момент под влиянием тепловых флуктуаций спонтанно переориентируется, скажем, из метастабильной позиции (θ = 0) в равновесную (θ = π), то есть преодолеет этот барьер, перестанет быть пренебрежимо малой. Подобные термостимулированные флуктуации намагниченности называют иногда суперпарамагнитными флуктуациями. На это впервые обратил внимание французский ученый Л.Неель в 1949 году, изучая свойства малых частиц магнетита Fe3O4 в земных породах. Процесс термостимулированного перехода из метастабильного минимума энергии в стабильный называют релаксацией. Неель рассмотрел поведение ансамбля частиц в достаточно сильном магнитном поле. Он показал, в частности, что после выключения поля остаточная намагниченность M(t) уменьшается со временем по экспоненциальному закону
, (1)
где M(0) – начальное значение намагниченности, параметр τ – время релаксации.
Это напоминает процесс релаксации в парамагнетиках, изучаемый обычно с помощью техники электронного парамагнитного резонанса (ЭПР). Однако есть и существенные различия. Для парамагнетиков время релаксации τ приближенно равно 10-7 – 10-12 с, а для малых магнитных частиц значительно больше – на многие порядки величины. Обе системы различаются и по величине спина частиц s. В случае парамагнетика s приближенно равно 1 и элементарный магнитный момент атома
μ=2μB, где μBмагнетон Бора. В ансамбле ультрамалых частиц каждая имеет огромный полный спин и, следовательно, огромный магнитный момент. Неель назвал материалы, которые можно рассматривать с точки зрения магнетизма как ансамбли независимых малых магнитных частиц, суперпарамагнетиками, а их квазипарамагнитное поведение – суперпарамагнетизмом. Из формулы (1) следует важный вывод: магнитные характеристики суперпарамагнитных материалов могут лишь медленно изменяться со временем; помимо магнитной релаксации такое поведение называют также магнитным последействием или магнитной вязкостью. Основная величина, определяющая скорость магнитной релаксации (или τ–1) суперпарамагнетика, как установил тот же Неель, следует закону Аррениуса, уменьшается с понижением температуры
, (2)
где k – постоянная Больцмана, ΔU – величина энергетического барьера, T – температура.
Предэкспоненциальный множитель f0 для типичных магнитных частиц лежит в интервале 10-9—10-10 с–1. Время релаксации сильно зависит от объема частицы. Например, для сферической частицы Fe при специально подобранных параметрах оно может быть соответственно и 30 лет, и 7 суток.
Регистрация кривой перемагничивания суперпарамагнетиков часто дает существенно разные зависимости – все определяется временным масштабом измерительного процесса. У очень малых частиц время релаксации τ бывает достаточно малым, поэтому при измерении с небольшим временным разрешением магнитный момент частицы совершает несколько переходов между минимумами энергии. В этом случае при внешних полях, близких к нулю, измеренное среднее значение намагниченности окажется также равным нулю. Поведение системы таких малых частиц в магнитном поле будет казаться вполне аналогичным поведению ансамбля парамагнитных атомов, для которых гистерезис намагниченности отсутствует. При достаточно быстрых измерениях, когда переходы между минимумами энергии не успевают произойти, на кривой перемагничивания наблюдается гистерезис (рис.1).
Кривые перемагничивания, рассчитанные Стонером и Вольфартом для однодоменных частиц с одноосной анизотропией при Т = 0 K.
a) — кривые гистерезиса для одной частицы, намагничиваемой под разным углом (θ1) к легкой оси анизотропии (mz — проекция намагниченности частицы на направление магнитного поля H, ms — намагниченность насыщения частицы, H — магнитное поле, K — константа одноосной анизотропии).
b) — кривая перемагничивания для ансамбля частиц с равномерно распределенными направлениями легких осей в пространстве (M — намагниченность ансамбля частиц нормированная на намагниченность насыщения ансамбля).
Рис.1.
В последние годы было обнаружено нарушение закона Аррениуса при T около абсолютного нуля. Вместо того чтобы стремиться к нулю, скорость релаксации выходит на некоторую константу. Эту особенность в поведении магнитной релаксации при очень низких температурах связывают с явлением макроскопического квантового туннелирования. Последнее означает, что при достаточно низкой температуре, когда термические флуктуации малы и не могут “перебрасывать” магнитный момент через барьер между соседними потенциальными ямами, этот вектор может переориентироваться в результате квантовой флуктуации или, другими словами, протуннелировать из одного минимума энергии (метастабильного) в другой (равновесный).
 
 

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Переход к использованию в качестве носителя информации ансамблей однодоменных анизотропных наночастиц, в которых ориентация магнитного момента каждой гранулы будет нести полезную информацию, позволит значительно увеличить плотность записи информации по сравнению с современными носителями.
В то же время, свойственное однодоменным частицам явление суперпарамагнетизма является в данном технологическом направлении паразитным фактором, который может существенно сокращать длительность хранения информации (так называемый «суперпарамагнитный лимит») при значительном уменьшении объема частиц. Кроме того, когда расстояние между соседними частицами достаточно мало, на магнитных свойствах отдельной СВ-частицы начинают сказываться эффекты межчастичного взаимодействия. Это приводит к тому, что величина энергетического барьера частицы становится зависящей от ориентаций магнитных моментов соседних частиц. Последнее значительно усложняет понимание процессов перемагничивания в таком взаимодействующем ансамбле. К началу XXI века корректная картина процессов перемагничивания в таких ансамблях не сформирована полностью, что в некотором смысле «притормаживает» применение таких материалов как наногранулярные ферромагнитные пленки.
Зависимости нормированной потенциальной энергии частицы от ориентации магнитного момента ((θ) при разных значениях магнитного поля h.
a) — для ланжевеновской частицы;
b) — для одноосной СВ-частицы, ориентированной легкой осью вдоль магнитного поля (θ1 =0).
(θ — угол между направлением магнитного момента частицы и направлением магнитного поля, h — нормированное на ms/(2K) магнитное поле, V — объем частицы, ms — ее намагниченность насыщения, K — константа одноосной анизотропии СВ-частицы.
Рис.1.
Суперпарамагнетизм ставит естественный верхний предел плотности любой магнитной записи. Однако он не абсолютен – в том смысле, что зависит от технологии записи и структуры носителя. Принято считать, что суперпарамагнитный предел продольной записи вряд ли превышает 200 гигабит на квадратный дюйм, а перпендикулярной – один терабит. Для преодоления этого порога потребуются более стабильные ферромагнитные материалы, обладающие намного большей коэрцитивной силой (характеризует интенсивность размагничивающего поля) по сравнению с используемыми в настоящее время. Но все дело в том, что такие материалы требуют для перемагничивания куда более сильных полей, нежели те, которые генерируют современные магнитные головки. Однако коэрцитивную силу можно снизить в десятки раз с помощью быстрого нагрева зоны записи, за которым должно последовать столь же быстрое охлаждение, стабилизирующее намагниченность и тем самым сохраняющее информацию.

Реализации эффекта

Наиболее ярким отличием в магнитных свойствах однодоменной наночастицы от свойств объемного ферромагнетика является эффект суперпарамагнетизма. В однодоменной частице температура вызывает флуктуации направления магнитного момента относительно его энергетически выгодной ориентации. Если частица изотропна, то характер ее намагничивания будет подобен намагничиванию парамагнитного иона с необычайно большим значением спина и будет описываться функцией Ланжевена. Ансамбли таких изотропных частичек называют ансамблями ланжевеновских частичек. Если же частицы анизотропны (имеют анизотропию формы, кристаллографическую анизотропию и т. п.), то магнитные свойства ансамбля таких частиц будут в значительной мере отличаться от свойств ансамбля ланжевеновских частиц.

Первые работы по интерпретации магнитных свойств ансамбля анизотропных однодоменных частиц были выполнены английскими физиками Стонером и Вольфартом. Исследование некоторых твердых растворов магнитного и немагнитного металлов в определенном интервале их соотношений демонстрировало экстремально высокие значения коэрцитивности, не характерные для чистого ферромагнетика. Стонер и Вольфарт предложили простую и в то же время удачную интерпретацию этих результатов. Они предположили, что в таком твердом растворе происходит распад на магнитную и немагнитную фракции, в результате чего образуются ферромагнитные частички нанометрового масштаба, равномерно, но не упорядоченно расположенные в немагнитной среде. Исходя из соображений, что таким малым частичкам энергетически выгодно быть однодоменными, они предположили, что перемагничивание в каждой из них происходит путем когерентного вращения всех магнитных моментов ионов в частице, что в свою очередь предполагает, что в процессе перемагничивания абсолютное значение намагниченности частички не изменяется. Исходя из этих представлений, ученые рассчитали кривые перемагничивания для разных ансамблей частиц при Т = 0 К (см. рис. 1 в описании эффекта). Полученные результаты хорошо согласовывались с экспериментальными данными и такая теория перемагничивания наночастиц получила признание и остается популярной и в наши дни. Поэтому однодоменную анизотропную частичку, перемагничивание в которой осуществляется без изменения абсолютного значения ее намагниченности, принято называть Стонер-Вольфартовской частичкой (СВ-частицей).
Состояния СВ-частиц. В отличие от магнитных свойств ансамбля ланжевеновских частиц, где определяющими внутренними параметрами является магнитный момент частицы (в реальных системах — дисперсия по этому параметру), а внешним параметром — температура, магнитные свойства ансамблей СВ-частиц зависят от многих дополнительных параметров. Наиболее важными среди них являются тип анизотропии частиц и их взаимное расположение в ансамбле. Среди внешних параметров дополнительно к температуре добавляются начальное состояние ансамбля (которое может быть неравновесным) и время наблюдения за ансамблем — время измерения.
В определенном интервале значений магнитных полей наличие у каждой частицы, например одноосной анизотропии, приводит к возникновению барьера, разделяющего два энергетических минимума в фазовом пространстве ориентаций магнитного момента. Время жизни в каждом из минимумов будет определяться высотой барьера и температурой. Установление термодинамического равновесия в таком ансамбле будет происходить путем термоактивационных переориентаций магнитного момента через барьер с характерным для данной температуры временем релаксации.
Так как этот процесс происходит во времени, то, в зависимости от характерного для каждого эксперимента времени наблюдения за системой (времени измерения) и температуры, магнитное состояние ансамбля можно условно разделить на два типа: блокированное и разблокированное.
Блокированное состояние будет соответствовать всему участку температур, ниже некоторой характерной температуры, при котором в каждой экспериментальной точке система не успевает приблизиться к своему равновесному состоянию за установленное время измерения. Как результат такого состояния в магнитных свойствах системы будут проявляться эффекты блокировки, связанные с метастабильностью системы, которые в случае магнитостатических измерений с протяжкой магнитного поля будут соответствовать возникновению коэрцитивности и остаточной намагниченности (реманентности) на кривых перемагничивания.
Разблокированное состояние будет соответствовать всему участку температур, выше той же характерной температуры. В этом температурном участке система характеризуется малым по сравнению со временем измерения временем релаксации и в каждой экспериментальной точке система успевает приближаться к своему, соответствующему этой точке равновесному состоянию. Как результат эффекты блокировки практически не будут проявляться. Значение же этой характерной температуры, разделяющей блокированное и разблокированое состояния, называется температурой блокировки. Её значение будет сильно зависеть от времени измерения, характерного для каждого из экспериментов.

Литература

1. Физика. Большой энциклопедический словарь. Гл. ред. А.М. Прохоров. – изд. – М.: Большая российская энциклопедия, 1999г. Стр.731

2. E. C. Stoner, E. P. Wohlfarth Механизм магнитного гистерезиса в гетерогенных сплавах = A Mechanism of Magnetic Hysteresis in Heterogeneous Alloys // Philos. Trans. R. Soc. London, Ser. A.. — 1948. — Т. 240. — № 826. — С. 599-642.

3. Звездин А.К. Магнитные молекулы и квантовая механика//Природа. 2000. №12.

4. Звездин К.А. Особенности процесса перемагничивания трехслойных магнитных наноструктур//ФТТ. 2000. Т. 42. № 1.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина