Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Бинауральный эффект
Бинауральный эффект

Анимация

Описание

 Бинауральный эффект (БЭ) - психофизиологическое явление, заключающееся в слитном восприятии звуков, принимаемых правым и левым ухом, способность человека и животных определять направление на источник звука (пеленгование).
Пусть волна падает под углом альфа к линии, соединяющей оба уха. Тогда звук достигнет левого уха позднее правого (рисунок 1), а время задержки составит величину
время задержки звуковой волны,
где путь при огибании препятствия - криволинейный путь, проходимый звуковой волной при огибании ею головы человека за счет дифракции. Поскольку голова частично экранирует звук, то амплитуда волны, достигающей левого уха, несколько уменьшается. Совместное действие этих двух факторов дает человеку возможность определить направление на источник звука. Если период колебаний звуковой волны сравним со временем задержки:
время задержки,
то волны, падающие под углом, вызывают колебания барабанных перепонок левого и правого уха со сдвигом фаз сдвиг фаз, по которому человек и определяет направление прихода волны.
Бинауральный эффект. Пунктиром изображен контур радиуса  R, имитирующий голову человека.
                бинауральный эффект
Рис. 1
Ошибка пеленгования зависит от направления прихода звука, его спектрального состава и длительности, а также наличия вблизи слушателя источников посторонних шумов и предметов, отражающих звук. В отсутствии мешающих отражений случайная ошибка пеленгования не превышает 10-20, а при наличии помех ошибки могут достигать 100 и более. В вертикальной плоскости ошибки значительно больше. Короткие звуки пеленгуются точнее длительных и почти не подвержены влиянию мешающих отражений.
БЭ важен для выделения одних звуков на фоне других, отличающихся направлением, например, звуков отдельных инструментов в оркестре или речи одного человека при наличии многих говорящих. Это явление дает возможность определить направление на источник звука и играет существенную роль в музыкальной акустике (стереофония).

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Человеку с нормальным слухом удаётся определять это направление в горизонтальной плоскости с точностью до 3°. Расположение источника звука по высоте устанавливается менее точно. Более точному определению направления прихода звука способствует изменение положения ушных раковин (у животных) и головы (у животных и человека). Бинауральный эффект можно усилить, увеличив расстояние между приёмниками, что достигается при помощи звукоулавливателей.
Бинауральные биения были открыты в 1839 году немецким экспериментатором Г.В. Давом. Способность людей - слышать бинауральные биения возникла в результате эволюционной адаптации. Многие виды животных способны делать то же самое благодаря особенностям структуры своего мозга. Полоса частот, в которой животное может слышать бинауральные ритмы, зависит от размеров его черепной коробки. В случае человека это должна быть несущая частота ниже примерно 1000 Гц. Длина волны такого акустического сигнала не превышает размеров черепной коробки человека, таким образом, он огибает голову по принципу дифракции. Подобный эффект наблюдается при распространении радиоволн -низкочастотные радиосигналы (длинные и средние волны) доходят в любую точку планеты независимо от препятствий на их пути в виде гор, строений и т.п. Высокочастотные (короткие) радиоволны, типа УКВ и РМ-радио, телевидения и СВЧ, распространяются по прямой линии и не могут огибать Землю. Горы и высокие здания блокируют их распространение. Поскольку акустические сигналы с частотой менее 1000 гц огибают голову, их слышат оба уха. Но поскольку между ушами имеется определенное расстояние, мозг "слышит" сигналы, поступающие от них, с разными фазами, т.е. каждое ухо слышит свою часть волны, по мере того как она огибает голову. Именно эта разность фаз позволяет мозгу точно определять расположение источника звука при частоте менее 1000 гц. При частоте звука более 8000 гц с локализацией источника уже хорошо справляется внешнее ухо. Почти все звуки, издаваемые животными, имеют частоту ниже 1000 гц. Нетрудно понять, зачем им понадобилось умение точно вычислять расположение друг друга. В применении же к нашим задачам эта способность, присущая человеку, как раз и дает возможность слышать бинауральные биения. Когда в правом и левом ухе присутствуют сигналы двух различных частот, мозг вычисляет разность фаз между этими сигналами. В нормальных условиях это дало бы информацию о направлении звука. Но в нашем случае, когда звук идет из наушников или стереодинамиков, мозг производит наложение этих двух сигналов, что в результате дает третью, "разностную", частоту биения, слышимую как бинауральный ритм. Он воспринимается как биения на частоте, равной разности частот, слышимых правым и левым ухом. Исследования показали, что пространственно эти биения возникают в верхней оливе, расположенной в стволе мозга - первой точке контралатеральной интеграции органов слуха. Исследования позволяют также предположить, что резонансный отклик идет из inferior colliculus. Эта активность передается в кору мозга, где ее можно зафиксировать с помощью ЭЭГ.

 

Реализации эффекта

Приведем наблюдение известного психолога С.Л. Рубинштейна, сделанные им во время одного заседания.
"...Заседание происходило в очень большом радиофицированном зале. Речи выступающих передавались через несколько громкоговорителей, расположенных слева и справа вдоль стен. Сначала, сидя сравнительно далеко, я по свойственной мне близорукости не разглядел выступавшего и, не заметив, как он оказался на трибуне, я принял его смутно видневшуюся мне фигуру за председателя. Голос (хорошо мне знакомый) выступавшего я отчетливо услышал слева, он исходил из помещавшегося поблизости громкоговорителя. Через некоторое время я вдруг разглядел докладчика, точнее, заметил, как он сделал сначала один, а затем еще несколько энергичных жестов рукой, совпавших с голосовыми ударениями, и тотчас же звук неожиданно переместился - он шел ко мне прямо спереди, от того места, где стоял докладчик. Рядом со мной сидел коллега, профессор - педагог, сам слепой. Мне бросилось в глаза, что он сидит в полуоборот, повернувшись всем корпусом влево, напряженно вытянувшись по направлению к репродуктору; в такой позе он просидел все заседание. Заметив его странную позу, я сначала не сообразил, чем она вызвана. Так как он не видел, для него, очевидно, все время, как для меня сначала, пока я не разглядел докладчика, источник звука локализовался в направлении громкоговорителя. Ориентируясь на основе слуховых ощущений, мой сосед локализовал и трибуну в направлении громкоговорителя. Поэтому он сидел в полуоборот, желая сидеть лицом к президиуму.
Воспользовавшись перерывом, я пересел на заднее место справа. С этого отдаленного места я не мог разглядеть говорившего; точнее, я смутно видел его фигуру, но не видел, говорил ли он (движение губ, жестикуляцию и т. д. ): звук перестал идти от трибуны, как это было до перерыва, он снова переместился к громкоговорителю, на этот раз справа от меня. Рискуя несколько нарушить порядок на заседании, я перешел ближе к оратору. Сначала в локализации звука не произошло никаких перемен. Но вот я стал вглядываться в говорящего и вдруг заметил его жестикуляцию, и тотчас звук переместился на трибуну; я стал слышать его там, где я видел говорящего. Когда следующий оратор направился к трибуне, я следил за ним глазами до трибуны и заметил, что с момента, как он взошел на трибуну, понесся звук и звук его речи шел с трибуны. Но во время его речи я стал делать себе заметки и потерял его, таким образом, из виду. Перестав писать, я с удивлением заметил, что голос того же оратора уже доносился до меня не спереди, с того места, где он стоял, а справа, сбоку, локализуясь в ближайшем репродукторе. В течение этого заседания раз 15 звук перемещался с неизменной закономерностью. Звук перемещался на трибуну или снова возвращался к ближайшему громкоговорителю в зависимости от того, видел ли я говорящего человека (движение рта, жестикуляция) или нет. В частности, когда оратор начинал заметно для меня жестикулировать и я видел, что он говорит, звук перемещался к нему, я слышал его на трибуне; когда оратор переставал жестикулировать и я не видел непосредственно перед собой говорящего человека, звук переходил к громкоговорителю. При этом я не представлял, а воспринимал или даже ощущал звук то тут, то там. Стоит отметить, что я, конечно, очень быстро установил и затем отлично знал, где говорящий. Но мне нужно было видеть говорящего, а не только знать, где он находится, для того чтобы звук переместился к нему. Отвлеченное знание не влияло на непосредственную пространственную локализацию звука. Однако к концу заседания, по прошествии примерно 2 часов, в течение которых происходили эти перемещения, за которыми я специально наблюдал и над которыми я собственно экспериментировал, положение изменилось, я мог уже добиться перемещения звука на трибуну, фиксируя мысленно внимание на говорящем, перенося говорящего на трибуну в своем представлении.
Локализуем ли мы звук, исходя из слуховых или зрительных данных, мы локализуем не слуховые и зрительные ощущения и образы восприятия в слуховом или зрительном "поле", а реальные явления, отображаемые в наших ощущениях, в восприятиях в реальном пространстве. Поэтому локализация источника звука определяется не только слуховым, но и зрительным восприятием вообще, совокупностью всех данных, служащих для ориентировки в реальном пространстве. ..."

 

Способность определять направление, из которого исходит звук, обусловлена бинауральным характером нашего слуха, т. е. тем, что мы воспринимаем звук двумя ушами. Локализацию звука в пространстве обозначают поэтому как би - науральный эффект. Люди, глухие на одно ухо, лишь с большим трудом определяют направление звука и вынуждены прибегать для этой цели к вращению головы и к различным косвенным показателям. Бинауральный эффект может быть фазовым и амплитудным. При фазовом бинауральном эффекте определение направления, из которого исходит звук, обусловлено разностью времен прихода одинаковых фаз звуковой волны к двум ушам. При амплитудном бинауральном эффекте определение направления звука обусловлено разностью громкостей, получающихся в двух ушах. Локализация звуков на основании фазового бинаурального эффекта возможна только в отношении звуков невысоких частот (не свыше 1500 Гц, а вполне отчетливо даже только до 800 Гц). Для звуков высоких частот локализация совершается на основе различия громкостей, получающихся в одном и другом ухе. Между фазовым и амплитудным бинауральным эффектами существуют определенные соотношения. Некоторые авторы (Р. Гартлей, Т. Фрей) считают, что механизмы фазовой и амплитудной локализации всегда действуют в какой - то мере совместно.
В естественных условиях пространственная локализация звука определяется не только бинауральным эффектом, а совокупностью данных, служащих для ориентировки в реальном пространстве. Существенную роль при этом играет взаимодействие слуховых данных со зрительными и осмысливание первых на основе восприятия реального пространства.

 

Литература

1. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.

2. Савельев И.В. Курс физики: Учебник для вузов.т.1: Механика. Молекулярная физика. – М.: Наука, 1989

3. С. Л. Рубинштейн. Основы общей психологии. СПб., 1998.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина