Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Вихрь
Вихревое движение

Описание

Вихревое движение - движение жидкости или газа, при котором их малые элементы (частицы) перемещаются не только поступательно, но и вращаются около некоторой мгновенной оси.
Подавляющее большинство течений жидкости и газа, которые происходят в природе или осуществляются в технике, представляют собой вихревое движение направленное, при движении воды в трубе имеет место вихревое движение как в случае ламинарного течения, так и в случае турбулентного течения. Вращение объемов обусловлено здесь тем, что на стенке из–за прилипания жидкости скорость ее равна нулю, а при удалении от стенки быстро возрастает, так что скорости соседних слоев значительно отличаются друг от друга. В результате тормозящего действия одного слоя и ускоряющего действия другого возникает вращение частиц, т.е. имеет место вихревое движение. Примерами вихревого движения являются также: вихри воздуха в атмосфере, которые часто принимают огромные размеры и образуют смерчи и циклоны; водяные вихри, которые образуются сзади устоев моста; воронки в воде реи и т. п.
Количественно вихревое движение можно охарактеризовать вектором w угловой скорости вращения частиц, который зависит от координат точки в потоке и от времени. Вектор w называется вихрем среды в данной точке; если w=0 в некоторой области течения, то в этой области течения безвихревое. Вращающиеся среды могут образовывать вихревые трубки или отдельные слои. Вихревая трубка не может иметь внутри жидкости ни начала, ни конца; она или может быть замкнутой (вихревое кольцо), или должна иметь начало и конец на границах жидкости (например, на поверхности обтекаемого тела; на поверхности сосуда, внутри которого заключена жидкость; на поверхности земли – в случае смерчей; на поверхности воды или на дне реки – в случае вихрей в текущей воде и т. п.)
При анализе динамических вихрей и их взаимодействия с внешним безвихревым потоком часто используется модель сосредоточенных вихрей — вихревых нитей, представляющих собой вихревые трубки крошечной интенсивности, но бесконечно малого диаметра. Вблизи вихревой нити жидкость движется относительно нее по окружностям, причем скорость обратно пропорциональна расстоянию от нити, v = Г/2πr. Если ось нити прямолинейна, это выражение верно для любых расстояний от нити (потенциальный вихрь). В сечении нормальной плоскости это течение соответствует точечному вихрю. Система точечных вихрей представляет собой консервативную динамическую систему с конечным числом степеней свободы, во многом аналогичную системе взаимодействующих частиц. Сколь угодно малое возмущение первоночально прямолинейных вихревых нитей приводит к их искривлению с бесконечными скоростями. Поэтому в расчетах их заменяют вихревыми трубками конечной завихренности. Узкая область завихренности, разделяющая две протяженные области безвихревого движения, моделируется пеленой — поверхностью, выстланной вихревыми нитями бесконечно малой интенсивности, так, что суммарная их интенсивность на единицу длины по нормали к ним вдоль поверхности постоянна. Вихревая поверхность представляет собой поверхность разрыва касательных компонент скорости. Она неустойчива к малым возмущениям.
В вязкой жидкости происходит выравнивание — диффузия локализированных завихренностей, причем роль коэффициента диффузии играет кинематическая вязкость жидкости ν. При этом эволюция завихренности определяется уравнением
При больших числах Re движение турбулизируется, и диффузия завихренности определяется много большим коэффициентом эффективной турбулентной вязкости, не являющимся константой для жидкости и сложным образом зависящим от характера движения.
Скорости, сообщаемые друг другу двумя плоскими вихрями.
Рис.1.
В движущейся среде, лишенной вязкости (идеальная жидкость), вихри не могли бы самостоятельно появиться, а будучи созданы, не могли бы затухать. В средах с малой вязкостью (вода, воздух) вихревое движение возникает в тех областях течения, где вязкость всего сильнее проявляется: в слое вблизи обтекаемого тела, в т.н. пограничном слое, заполненном сильно завихренной средой. Вихри пограничного слоя сбегают с поверхности обтекаемого тела и создают за этим телом след в форме тех или иных образований (вихревых слоёв или вихревых дороже). Вихри, возникающие при движении тела в среде, определяют значительную часть подъемной силы и силы лобового сопротивления, действующих на него. Поэтому изучение вихревого движения имеет большое значение для расчета и конструирования крыльев самолетов, воздушных винтов, лопаток турбин и т. д.
Взаимодействие вихревых колец.
Рис.2.
Присутствие в жидкости вихрей вызывает появление в ней добавочных скоростей. При наличии в жидкости системы вихрей они влияют на движение друг друга. Так, например, 2 вихря (рис. 1) равной по величине и противоположной по знаку интенсивности Г сообщают друг другу равные по величине и одинаково направленные скорости v, т. е. движутся поступательно; 2 вихря, имеющие одинаковые по абсолютной величине и знаку интенсивности, вращаются вокруг оси, проходящей через середину расстояний между ними.
Если 2 вихревых кольца имеют общую ось (рис. 2) и одинаковое направление вращения, то переднее кольцо вследствие скоростей, сообщаемых задним, увеличивается в диаметре и замедляется; заднее при этом уменьшается в диаметре, проходит сквозь переднее, т. е. они меняются местами, и весь процесс начинается сначала («игра» вихревых колец).
 

 

 

Ключевые слова

 

Разделы наук

 

Используется в научно-технических эффектах

Водяное колесо (Водяное колесо)

 

Используется в областях техники и экономики

1Водный транспорт
1Осушительные системы
1Оросительные системы
1Обводнение и водоснабжение
1Водохозяйственное строительство. Гидротехнические и гидромелиоративные сооружения
1Судостроение
1Гидроэнергетика

 

Используются в научно-технических эффектах совместно с данным эффектом естественнонаучные эффекты

1Пульсации скорости в турбулентном потоке (Пульсации скорости в турбулентном потоке)
1Вихревое движение (Вихрь)
1Кинематическая характеристика течения жидкости или газа, служащая мерой завихренности течения (Циркуляция скорости)
1Течение в плоском слое между твердыми границами, которые движутся в разные стороны с одинаковыми скоростями (Течение Куэтта)
1Отрыв пограничного слоя от поверхности (Отрыв пограничного слоя от поверхности)
1Ламинарное течение в пограничном слое (Ламинарное течение в пограничном слое)
1Резкое изменение давления в жидкости (Гидравлический удар)
1Стационарное течение идеальной жидкости в однородном поле тяжести (Закон Бернулли)
1Сохранение энергии движущейся жидкости (Уравнение Бернулли)
1Равномерная передача давления в жидкости или газе во всех направлениях (Паскаля закон)

 

Применение эффекта

Под воздействием солнечной радиации, рельефа и суточного вращения планеты в воздушном океане возникают неоднородности. Области пониженного давления называют циклонами, повышенного — антициклонами. Именно в циклонах зарождаются сильные ветры. Самые крупные из них достигают тысяч километров в диаметре и хорошо видны из космоса благодаря наполняющим их облакам. По своей сути это — вихри (рис.1), где воздух движется по спирали от краев к центру, в область с низким давлением.
Атмосфера нашей планеты не бывает спокойной, ее воздушные массы находятся в постоянном движении. Наивысшей силы воздушная стихия достигает в циклонах — круговых вращениях ветра по направлению к центру. Штормы, ураганы — это бешено вращающиеся гигантские вихри. Чаще всего они зарождаются над прогретыми участками тропических зон океанов, но могут возникнуть и в высоких широтах. Самые же скоростные вихри — торнадо — до сих пор во многом загадочны.
Рис.1.
Такие вихри, постоянно существующие в атмосфере, но рожденные именно в тропиках — в Атлантике и восточной части Тихого океана — и достигшие скорости ветра свыше 30 м/с, называют ураганами. («Ураган» — от имени индейского злого бога Хуракана). Для того чтобы воздух перемещался с такой скоростью, необходима большая разность атмосферного давления на малом расстоянии.
Вращающиеся частицы среды могут образовывать вихревые трубки (рис. 2) или отдельные слои. Вихревая трубка не может иметь внутри жидкости ни начала, ни конца; она или может быть замкнутой (вихревое кольцо), или должна иметь начало и конец на границах жидкости (например, на поверхности обтекаемого тела; на поверхности сосуда, внутри которого заключена жидкость; на поверхности земли — в случае смерчей, на поверхности воды или на дне реки — в случае вихрей в текущей воде и т.п.).
Вихревые трубки
Рис.2.

Реализации эффекта

За редким исключением, движение жидкости или газа почти всегда бывает вихревым. Так, вихревым является ламинарное течение в круглой трубе, когда скорость распределяется по параболическому закону, течение в пограничном слое при плавном обтекании тела и в следе за плохо обтекаемым телом. Вихревой характер носит любое турбулентное течение. В этих условиях выделение класса «вихревое движение» оказывается осмысленным, благодяря тому, что при преобладании инерционных сил над вязкими (при очень больших числах Рейнольдса) типична локализация завихрености в обособленнх массах жидкости — вихрях или вихревых зонах.
Согласно классическим теоремам Гельмгольца, в предельном случае движения невязкой жидкости, плотность которой постоянна или зависит только от давления, в потенциальном силовом поле вихревые линии вморожены в среду, то есть в процессе движения они состоят из одних и тех же частиц жидкости — являются материальными линиями. Вихревые трубки при этом оказываются вмороженными в среду, а их интенсивность сохраняется в процессе движения. Сохраняется также циркуляция скорости по любому контуру, состоящему из одних и тех же частиц жидкости (теорема Кельвина). В частности, если при движении область, охватываемая данным контуром, сужается, то интенсивность вращательного движения внутри него возрастает. Это важный механизм концентрации завихренности, реализующийся при вытекании жидкости из отверстия в дне сосуда (ванны), при образовании водоворотов вблизи нисходящих потоков в реках и определяющий образование циклонов и тайфунов в зонах пониженного атмосферного давления в которые происходит подтекание (конвергенция) воздушных масс.
В жидкости, находящейся в состоянии покоя или потенциального движения, вихри возникают либо из-за нарушения баротонии, например образование кольцевых вихрей при подъеме нагретых масс воздуха — термиков, либо из-за взаимодействия с твердыми телами.
Если обтекание тела происходит при больших числах Re, завихренность порождается в узких зонах — в пограничном слое — проявлением вязких эффектов, а затем сносится в основной поток, где формируются отчетливо видимые вихри, некоторое время эволюционирующие и сохраняющие свою индивидуальность. Ососбенно эффектно это проявляется в образовании за плохообтекаемым телом регулярной вихревой дорожки Кармана. Вихреобразование в следе за плохообтекаемым телом определяет основная часть лобового сопротивления тела, а образование вихрей у концов крыльев летательных аппаратов вызывает дополнительное индуктивное сопротивление.

Литература

1. Кочин Н. Е., Кибель И. А., Розе Н. В. Теоретическая гидромеханика. 6 изд., ч.1. — М., 1963г.;

2. Седов Л. И. Механика сплошной среды, т.1-2, 4 изд. — М., 1983-84;

3. Лаврентьев М. А., Шабат Б. В. Проблемы гидродинамики и их математические модели, 2 изд. — М., 1977;

4. Бэтчелор Дж. Введение в динамику жидкости, пер. с англ. — М., 1973

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина