Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Закон отражения волн
Прохождение волн через границу разделе двух сред и отражение о нее

Анимация

Описание

Закон отражения волн — устанавливает изменение направления хода светового луча в результате встречи с отражающей (зеркальной) поверхностью: падающий и отраженный лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, и эта нормаль делит угол между лучами на две равные части. Широко распространённая, но менее точная формулировка «угол падения равен углу отражения» не указывает точное направление отражения луча. Тем не менее, выглядит это следующим образом:
Закон отражения волн
Рисунок 1
Этот закон является следствием применения принципа Ферма к отражающей поверхности и, как и все законы геометрической оптики, выводится из волновой оптики. Закон справедлив не только для идеально отражающих поверхностей, но и для границы двух сред, частично отражающей свет. В этом случае, равно как и закон преломления света, он ничего не утверждает об интенсивности отражённого света.
Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.
Зеркальное отражение света отличает определённая связь положений падающего и отражённого лучей: 1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности; 2) угол отражения равен углу падения. Интенсивность отражённого света (характеризуемая отражения коэффициентом) зависит от угла падения и поляризации падающего пучка лучей, а также от соотношения показателей преломления n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды — диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен (n2-n1)2/(n2+n1)2. В очень важном частном случае нормального падения из воздуха или стекла на границу их раздела он составляет 4%.
Характер поляризации отражённого света меняется с изменением α и различен для компонент падающего света, поляризованных параллельно (р-компонента) и перпендикулярно (s-компонента) плоскости падения. Под плоскостью поляризации при этом понимается, как обычно, плоскость колебаний электрического вектора световой волны. При углах α, равных так называемому углу Брюстера, отражённый свет становится полностью поляризованным перпендикулярно плоскости падения (р-составляющая падающего света полностью преломляется в отражающую среду; если эта среда сильно поглощает свет, то преломленная р-составляющая проходит в среде очень малый путь). Эту особенность зеркального отражения света используют в ряде поляризационных приборов. При α, больших угла Брюстера, коэффициент отражения от диэлектриков растет с увеличением α, стремясь в пределе к 1, независимо от поляризации падающего света. При зеркальном отражении света, как явствует из формул Френеля, фаза отражённого света в общем случае скачкообразно изменяется. Если α = 0 (свет падает нормально к границе раздела), то при n2 > n1 фаза отражённой волны сдвигается на p, при n2 < n1 — остаётся неизменной. Сдвиг фазы при отражении света может быть различен для р- и s- составляющих падающего света в зависимости от того, больше или меньше α угла Брюстера, а также от соотношения n2 и n1. Отражение света от поверхности оптически менее плотной среды (n2 < n1) при sin j = n2 / n1 является полным внутренним отражением, при котором вся энергия падающего пучка лучей возвращается в 1-ю среду. Зеркальное отражение света от поверхностей сильно отражающих сред (например, металлов) описывается формулами, подобными формулам Френеля, с тем (правда, весьма существенным) изменением, что n2 становится комплексной величиной, мнимая часть которой характеризует поглощение падающего света.

 

 

Ключевые слова

 

Разделы наук

 

Используется в научно-технических эффектах

Способ записи и восстановления светового поля, основанный на регистрации интерференционной картины, образованной когерентными предметной и опорными волнами (Оптическая голография )
Действительное изображение (Действительное изображение)
Зеркало оптическое (Зеркало оптическое)
Зеркально-линзовые системы (Зеркально-линзовые системы)
Оптический прибор, состоящий из большого числа элементов, на которых происходит дифракция света (Дифракционная решетка)

 

Используется в областях техники и экономики

1Телекоммуникационные сети и аппаратура
1Аппаратура для оптической связи в свободном пространстве
1Инфракрасная техника
4Телевизионная техника
4Технологии, использующие голографию
1Квантовая электроника
3Оптическая техника
3Кинотехника
3Фототехника
1Узлы, детали и элементы радиоэлектронной аппаратуры
2Устройства для записи и воспроизведения сигналов и информации
2Аппаратура для световодной связи
2Нетрадиционная энергетика
1Гелиоэнергетика
1Приборы для измерения оптических и светотехнических величин и характеристик
1Системы и устройства отображения информации
1Оптоэлектронная техника
1Светотехника

 

Используются в научно-технических эффектах совместно с данным эффектом естественнонаучные эффекты

2Дисперсия света (Дисперсия света)
1Изменение масштаба восстановленного голографического изображения при изменении длины волны восстанавливающего излучения (Голографическое увеличение)
5Прохождение волн через границу разделе двух сред и отражение о нее (Закон отражения волн)
3Представление волнового фронта, создаваемого источником света, как результат интерференции вторичных когерентных волн (Гюйгенса-Френеля принцип)
1Определение положений максимумов интенсивности упругого рассеяния рентгеновского излучения на кристалле (Брэгга-Вульфа условие)
1Модуляция света, вызванная изменениями среды, связанными с прохождением через нее той же световой волны (Самомодуляция света)
3Ферма принцип (Ферма принцип )
1Эллипсоид, соответствующий поверхности световой волны, распространяющейся от точечного источника в кристалле (Френеля эллипсоид)
2Синусов условие (Синусов условие)
1Соотношение синусов углов падения и преломления света от плоской границы раздела двух диэлектриков, равное их относительному показателю преломления (Снелля закон преломления)
2Фокус (Фокус)
3Поляризация электромагнитных волн (Поляризация электромагнитных волн )
2Оптический прибор, основанный на полном внутреннего отражения, для получения полностью поляризованного света (Николя призма)
2Оптический прибор, состоящий из системы чередующихся прозрачных и непрозрачных концентрических колец, размещенных по принципу расположения зон Френеля (Зонная пластинка)
3Соотношение между показателем преломления диэлектрика и углом падения на него неполяризованного света, при котором отражённый от поверхности диэлектрика свет полностью поляризован (Брюстера эффект)
1Двойное лучепреломление (Двойное лучепреломление)
1Хроматическая аберрация (Хроматическая аберрация)
1Изображение предмета, образованное пересечениями геометрических продолжений световых лучей, прошедших через оптическую систему, в направлениях, обратных действительному ходу этих лучей (Мнимое изображение)
1Преобразование поляризации света при отражении от диэлектрика (Преобразование поляризации света при отражении от диэлектрика)
1Соотношения между амплитудами, фазами и состояниями поляризации падающей, отраженной и преломленной электромагнитных волн на границе раздела двух диэлектриков (Френеля формулы)
2Дифракция света (Дифракция света)
1Метод разбиения волнового фронта на зоны, фазы колебаний которых отличаются на 180 градусов (Образование зон Френеля)

 

Применение эффекта

Оптоволокно — это стеклянная или пластиковая нить, используемая для переноса света внутри себя посредством полного внутреннего отражения. Волоконная оптика — раздел прикладной науки и машиностроения, описывающий такие волокна. Оптоволокна используются в оптоволоконной связи, которая позволяет передавать цифровую информацию на большие расстояния и с более высокой скоростью передачи данных, чем в электронных средствах связи. В ряде случаев они также используются при создании датчиков .
Простой принцип действия позволяет использовать различные методы, дающие возможность создавать самые разнообразные оптоволокна:
Одномодовые оптоволокна
Многомодовые оптоволокна
Оптоволокна с градиентным показателем преломления
Оптоволокна со ступенчатым профилем распределения показателей преломления.
Из-за физических свойств оптоволокна необходимы специальные методы для их соединения с оборудованием. Оптоволокна являются базой для различных типов кабелей, в зависимости от того, где они будут использоваться.
Принцип передачи света внутри оптоволокна был впервые продемонстрирован во времена королевы Виктории (1837—1901 гг.), но развитие современных оптоволокон началось в 1950-х годах. Они стали использоваться в связи несколько позже, в 1970-х; с этого момента технический прогресс значительно увеличил диапазон применения и скорость распространения оптоволокон, а также уменьшил стоимость систем оптоволоконной связи.
Оптоволокно
Рисунок 1

Реализации эффекта

Полное внутреннее отражение — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. К тому же, коэффициент отражения при полном внутреннем отражении не зависит от длины волны.
Этот оптический феномен наблюдается для широкого спектра электромагнитного излучения включая и рентгеновский диапазон.
В рамках геометрической оптики объяснение явления тривиально: опираясь на закон Снелла и учитывая, что угол преломления не может превышать 90°, получаем, что при угле падения, синус которого больше отношения меньшего коэффициента преломления к большему коэффициенту, электромагнитная волна должна полностью отражаться в первую среду.

В соответствии с волновой теорией явления, электромагнитная волна всё же проникает во вторую среду — там распространяется так называемая «неоднородная волна», которая экспоненциально затухает и энергию с собой не уносит. Характерная глубина проникновения неоднородной волны во вторую среду порядка длины волны.

 

Фата-моргана (итал. fata Morgana — фея Моргана, по преданию, живущая на морском дне и обманывающая путешественников призрачными видениями) — редко встречающееся сложное оптическое явление в атмосфере, состоящее из нескольких форм миражей, при котором отдалённые объекты видны многократно и с разнообразными искажениями.
Фата-моргана возникает в тех случаях, когда в нижних слоях атмосферы образуется (обычно вследствие разницы температур) несколько чередующихся слоёв воздуха различной плотности, способных давать зеркальные отражения. В результате отражения, а также и преломления лучей, реально существующие объекты дают на горизонте или над ним по нескольку искажённых изображений, частично накладывающихся друг на друга и быстро меняющихся во времени, что и создаёт причудливую картину фата-морганы.
Фата-моргана
Рисунок 1

Литература

1. Трофимова Т.И.. Курс физики: Учебное пособие для вузов, - 2-е изд., переработанное и дополненное. – М.: Высшая школа., 1990.

2. Родионов С. А. Основы оптики. Конспект лекций.- СПб: СПб ГИТМО (ТУ), 2000.

3. Сивухин Д. В. Общий курс физики. — Издание 3-е, стереотипное. — М.: Физматлит, МФТИ, 2002.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина