Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Магнитострикция
Изменение формы и размеров тела при его намагничивании

Описание

Магнитострикция - изменение формы и размеров тела при намагничивании. Явление магнитострикции было открыто Дж. Джоулем в 1842. В ферро- и ферримагнетиках (Fe, Ni, Со, Gd, Tb и других, ряде сплавов, ферритах) магнитострикция достигает значительной величины (относительное удлинение Δl / l ~ 10-6—10-2). В антиферромагнетиках, парамагнетиках и диамагнетиках магнитострикция очень мала. Обратное по отношению к магнитострикции явление — изменение намагниченности ферромагнитного образца при деформации — называется магнитоупругим эффектом, иногда — Виллари эффектом.
В современной теории магнетизма магнитострикцию рассматривают как результат проявления основных типов взаимодействий в ферромагнитных телах: электрического обменного взаимодействия и магнитного взаимодействия. В соответствии с этим возможны 2 вида различных по природе магнитострикционных деформаций кристаллические решётки: за счёт изменения магнитных сил (диполь-дипольных и спин-орбитальных) и за счёт изменения обменных сил.
При намагничивании ферро- и ферримагнетиков магнитные силы действуют в интервале полей от 0 до поля напряжённостью Hs, в котором образец достигает технического магнитного насыщения Is. Намагничивание в этом интервале полей обусловлено процессами смещения границ между доменами и вращения магнитных моментов доменов. Оба эти процесса изменяют энергетическое состояние кристаллической решётки, что проявляется в изменении равновесных расстояний между её узлами. В результате атомы смещаются, происходит магнитострикционная деформация решётки. Магнитострикция этого вида носит анизотропный характер (зависит от направления и величины намагниченности J) и проявляется в основном в изменении формы кристалла почти без изменения его объёма (линейная магнитострикция). Для расчёта линейной магнитострикции существуют полуэмпирические формулы. Так, магнитострикция ферромагнитных кристаллов кубической симметрии, намагниченных до насыщения, рассчитывается по формуле:
где si, sj и bi, bj — направляющие косинусы соответственно вектора Js и направления измерения относительно рёбер куба, а1 и a2 — константы анизотропии магнитострикции, численно равные , , где и — максимальные линейные магнитострикции соответственно в направлении ребра и диагонали ячейки кристалла. Величину ls = (Δl /l)s называют магнитострикцией насыщения или магнитострикционной постоянной.
Магнитострикция, обусловленная обменными силами, в ферромагнетиках наблюдается в области намагничивания выше технического насыщения, где магнитные моменты доменов полностью ориентированы в направлении поля и происходит только рост абсолютной величины Js (парапроцесс, или истинное намагничивание). Магнитострикция за счёт обменных сил в кубических кристаллах изотропна, то есть проявляется в изменении объёма тела. В гексагональных кристаллах (например, гадолинии) эта магнитострикция анизотропна. Магнитострикция за счёт парапроцесса в большинстве ферромагнетиков при комнатных температурах мала, она мала и вблизи точки Кюри, где парапроцесс почти полностью определяет ферромагнитные свойства вещества. Однако в некоторых сплавах с малым коэффициентом теплового расширения (инварных магнитных сплавах) магнитострикция велика [в магнитных полях ~ 8×104 а/м (103 э) отношение ΔV/V ~ 10-5]. Значительная по величине магнитострикция парапроцесса возникает также в ферритах при разрушении или создании магнитным полем неколлинеарных магнитных структур.
Магнитострикция относится к так называемым чётным магнитным эффектам, так как она не зависит от знака магнитного поля. Экспериментально больше всего изучалась магнитострикция в поликристаллических ферромагнетиках. Обычно измеряется относительное удлинение образца в направлении поля (продольная магнитострикция) или перпендикулярно направлению поля (поперечная магнитострикция). Для металлов и большинства сплавов продольная и поперечная магнитострикция в области полей технического намагничивания имеют разные знаки, причём величина поперечной магнитострикции меньше, чем продольной, а в области парапроцесса эти величины одинаковы. Для большинства ферритов как продольная, так и поперечная магнитострикции отрицательны; причина этого ещё не ясна. Величина, знак и графический ход зависимости магнитострикции от напряжённости поля и намагниченности зависят от структурных особенностей образца (кристаллографической текстуры, примесей посторонних элементов, термической и холодной обработки). У Fe продольная магнитострикция в слабом магнитном поле положительна (удлинение тела), а в более сильном поле — отрицательна (укорочение тела). Для Ni при всех значениях поля продольная магнитострикция отрицательна. Сложный характер магнитострикции в поликристаллических образцах ферромагнетиков определяется особенностями анизотропии магнитострикции в кристаллах соответствующего металла. Большинство сплавов Fe — Ni, Fe — Co, Fe — Pt и других имеют положительный знак продольной магнитострикции: Δl/l ~ (1-10)×10-5. Наибольшей продольной магнитострикцией обладают сплавы Fe — Pt, Fe — Pd, Fe — Со, Mn — Sb, Mn — Cu — Bi, Fe — Rh. Среди ферритов наибольшая магнитострикция у CoFe2O4, Tb3Fe5O12, Dy3Fe5O12: Δl / l » (2—25)×10-4. Рекордно высока магнитострикция у некоторых редкоземельных металлов, их сплавов и соединений, например у Tb и Dy, у TbFe2 и DyFe2: Δl / l » 10-3—10-2 (в зависимости от величины приложенного поля). Магнитострикция примерно такого же порядка обнаружена у ряда соединений урана (U3As4, U3P4 и других).
 
 

 


 

Ключевые слова

 

Разделы наук

 

Используется в научно-технических эффектах

Электромагнит (Электромагнит)
Прибор для измерения малых значений силы переменного тока (Вибрационный гальванометр)

 

Используется в областях техники и экономики

2Приборы для измерения электрических и магнитных величин
1Бытовая техника
1Элементы, узлы и устройства автоматики, телемеханики и вычислительной техники
1Телекоммуникационные сети и аппаратура
1Аппаратура для телефонной связи
1Аппаратура для телеграфной связи
1Системы и аппаратура передачи данных
1Электроакустическая, ультразвуковая и инфразвуковая техника
1Устройства для записи и воспроизведения сигналов и информации
1Телевизионная техника
1Радиопередающие и радиоприемные устройства
1Трансформаторы и электрические реакторы
1Электрические аппараты
1Электрические машины

 

Используются в научно-технических эффектах совместно с данным эффектом естественнонаучные эффекты

1Превращение электромагнитной энергии в тепловую в магнитоупорядоченном веществе при его перемагничивании переменным магнитным полем (Потеря магнитной энергии)
1Перемагничивание в магнитных пленках (Перемагничивание в магнитных пленках)
2Индуктивность соленоида (Индуктивность соленоида)
2Создание магнитного поля проводником с электрическими токами (Закон Био-Савара-Лапласа)
1Магнитные фазовые переходы с изменением ориентации осей намагничивания магнетиков при изменении внешнего магнитного поля (Ориентационные фазовые переходы индуцированные)
1Слабый ферромагнетизм (Существование спонтанной намагниченности антиферрмагнетиков.)
2Изменение формы и размеров тела при его намагничивании (Магнитострикция)
2Возникновение поперечного электрического поля в проводнике или полупроводнике с током при помещении его в магнитное поле (Холла эффект)
1Магнитные фазовые переходы с изменением ориентации осей намагничивания магнетиков (Ориентационные фазовые переходы спонтанные)
1Возникновение силы, действующей на электрический заряд, движущийся во внешнем электромагнитном поле (Лоренца сила)
1Смещение электронных оболочек относительно атомных ядер под действием внешенго электрического поля (Поляризуемость электронная)
1Диполь магнитный. Диполь электрический (Диполь)
1Закон Ома для участка цепи (Закон Ома для участка цепи)
1Самоиндукция (Самоиндукция)
1Возникновение механического момента относительно некоторой оси при намагничивании тела вдоль нее (Эйнштейна - Де Хааза эффект)

 

Применение эффекта

На явлении магнитострикции основано действие магнитострикционных преобразователей – устройств, преобразующих колебания магнитного поля в механические. Такие устройства входят в ультразвуковые излучатели, гидроакустические приборы, реле и др.
С магнитострикцией связаны различные аномалии упругости в ферро-, ферри- и антиферромагнетиках. Резкие аномалии модулей упругости и внутреннего трения, наблюдаемые в указанных веществах в районе точек Кюри и Нееля и других фазовых магнитных переходов, обязаны влиянию магнитострикции, возникающей при нагреве. Кроме того, при воздействии на ферро- и ферримагнитные тела упругих напряжений в них даже при отсутствии внешнего магнитного поля происходит перераспределение магнитных моментов доменов (в общем случае изменяется и абсолютная величина самопроизвольной намагниченности домена). Эти процессы сопровождаются дополнительной деформацией тела магнитострикционной природы — механострикцией, которая приводит к отклонениям от закона Гука. В непосредственной связи с механострикцией находится явление изменения под влиянием магнитного поля модуля упругости Е ферромагнитных металлов (ΔЕ-эффект).
Для измерения магнитострикции наибольшее распространение получили установки, работающие по принципу механооптического рычага, позволяющие наблюдать относительные изменения длины образца до 10-6. Ещё большую чувствительность дают радиотехнический и интерференционный методы. Получил распространение также метод проволочных датчиков, в котором на образец наклеивают проволочку, включенную в одно из плечей моста измерительного. Изменение длины проволочки и её электрического сопротивления при магнитострикционном изменении размеров образца с высокой точностью фиксируется электроизмерительным прибором.

 

Реализации эффекта

Этот вид магнитострикции возникает в результате изменения обменного взаимодействия между магнитными моментами атомов Мат в кристаллической решетке. Объясним, что это такое. Магнетизм атома обусловлен электронами (ядро атома дает очень малый вклад в магнетизм атома, и им обычно пренебрегают). Электроны атома участвуют в создании Мат двояко. Во-первых, каждый электрон, вращаясь вокруг ядра, образует микроскопический замкнутый ток, величина его равна произведению микроскопического тока на площадь орбиты электрона. Этот магнитный момент называется орбитальным Морб и изображается в виде вектора, направленного перпендикулярно площади орбиты. Во-вторых, каждый электрон обладает своеобразным "собственным" магнитным моментом (согласно выводам квантовой механики). Его называют спиновым Мсп (от англ. spin – вращение). Векторное сложение Морб и Мсп дает Мат. Следует отметить, что внутри атома Морб и Мсп связаны магнитными силами (спин-орбитальным взаимодействием).
В кристаллах ферромагнетиков, как было показано в 30-е годы русским теоретиком Я.И. Френкелем и немецким теоретиком В. Гейзенбергом, между электронами соседних магнитных атомов возникает особый вид взаимодействия, который они назвали обменным. Это электростатическое взаимодействие, однако оно не простое (кулоновское), а квантовое. В механизме обменного взаимодействия электронов важная роль отводится направлению спинов соседних атомов. Обменным его назвали потому, что в процессе данного взаимодействия электроны соседних магнитных атомов как бы обмениваются своими местами. Результатом обменного взаимодействия электронов является то, что моменты Мсп электронов устанавливаются параллельно друг другу, возникает спонтанная или самопроизвольная намагниченность (то есть без участия внешнего поля Н). Поскольку Мсп и Морб взаимосвязаны, то можно говорить, что спонтанная намагниченность Is создается упорядочиванием магнитных моментов Мат (намагниченность Is – это число однонаправленных Мат в 1 см3 ферромагнетика).
Спонтанная намагниченность обращается в нуль при температуре ТC, называемой точкой Кюри (по имени французского физика, открывшего ее). Величину обменного взаимодействия можно оценить по величине Т . При этой температуре тепловое движение разрушает упорядоченное расположение моментов Мат, созданное обменным взаимодействием. Отсюда следует, что чем больше обменное взаимодействие в ферромагнетике, тем выше должна быть температура ТC для разрушения магнитного порядка.
Как мы видели, подобного рода магнитострикция сопутствует процессу намагничивания ферромагнетика, при котором под влиянием Н происходит ориентация моментов Мат. Процесс напоминает намагничивание парамагнетиков, поэтому он получил название парапроцесса. Парапроцесс особенно интенсивен в области точки Кюри, и обменная магнитострикция здесь достигает наибольшей величины.
Отметим, что в ферромагнетиках, обладающих гексагональной структурой, например в редкоземельном металле гадолинии Gd, парапроцесс и обменная магнитострикция обладают анизотропией.

 

Магнитострикция, обусловленная изменением обменного взаимодействия, проявляется не только при приложении магнитного поля Н, но также при изменении температуры ферромагнетика (при отсутствии Н). Это тепловая магнитострикция (иногда называемая термострикцией) особенно велика в области точки Кюри. В самом деле, из вида температурной зависимости спонтанной намагниченности Is следует, что число разупорядоченных моментов Мат особенно бурно возрастает при приближении к ТC . Это приводит к некоторому изменению обменной энергии, что, в свою очередь, вызывает обменную магнитострикцию (ΔV/V)T , однако в противоположность действию парапроцесса отрицательную (так как она сопутствует разупорядочиванию моментов Мат).
У некоторых ферромагнетиков эффект спонтанной магнитострикции оказывает существенное влияние на тепловое расширение, так как приводит к частичной компенсации последнего.
Указанный выше сплав носит название инвара (не изменяющего свои размеры при нагреве) и давно применяется в часовой и приборостроительной промышленности. В настоящее время существует большое число сплавов типа инвар; природа их малого коэффициента теплового расширения магнитная. Явление компенсации коэффициента теплового расширения спонтанной магнитострикцией получило название инвар-эффекта. В гадолинии инвар-эффект анизотропен, то есть различен по разным осям гексагонального кристалла.

 

Литература

1. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.

2. Лукьянец В.А. Физические эффекты в машиностроении. - М.:Машиностроение. 1993

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина