Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Антиферромагнетизм
Антиферромагнетизм

Анимация

Описание

 

 
Антиферромагнетизм - одно из магнитных состояний вещества, отличающееся тем, что элементарные (атомные) магнитики соседних частиц вещества ориентированы навстречу друг другу (антипараллельно), и поэтому намагниченность тела в целом очень мала. Этим антиферромагнетизм отличается от ферромагнетизма, при котором одинаковая ориентация элементарных магнитиков приводит к высокой намагниченности тела. Иначе говоря, при определенных условиях обменное взаимодействие приводит к такой ситуации, что энергетически выгодным становится антипараллельная ориентация спинового момента соседних атомов. Такую ситуацию можно интерпретировать как одновременное наличие двух подрешеток, которые спонтанно намагничены в противоположных направлениях с одинаковой интенсивностью. Суммарная намагниченность равна нулю. Эта ситуация называется антиферромагнетизмом, а тела, в которых она осуществляется – антиферромагнетиками.
До начала 30-х гг. 20 века по магнитным свойствам все вещества делили на 3 группы: диамагнетики, парамагнетики и ферромагнетики. Антиферромагнетизм был открыт при изучении свойств парамагнетиков при низких температурах. Парамагнетики в магнитном поле намагничиваются так, что направление намагниченности совпадает с направлением поля. Намагниченность I пропорциональна напряжённости Н магнитного поля: I = χН. Коэффициент пропорциональности χ - магнитная восприимчивость - у парамагнетиков весьма мал - от 10-5 до 10-6 единиц СГС. Для большинства парамагнетиков характерен определённый вид зависимости магнитной восприимчивости от температуры - она растет с понижением температуры обратно пропорционально температуре (рис. 1а). В конце 20-х и начале 30-х гг. были обнаружены соединения (окислы и хлориды марганца, железа, кобальта, никеля), обладающие совершенно иным видом температурной зависимости магнитной восприимчивости χ(T). На кривых, характеризующих зависимость χ(T) у этих соединений, наблюдались максимумы (рис.1 бв и бг). Кроме того, ниже температуры максимума была обнаружена сильная зависимость χ от ориентации кристалла в магнитном поле. Если поле направлено, например, вдоль главной кристаллографической оси, то значение χ вдоль этого направления (его обозначают χ||) убывает, стремясь к нулю при Т → 0К. В направлениях, перпендикулярных этой оси, значение χ (его обозначают χ_|_) остаётся постоянным (не зависит от температуры). На кривых, показывающих температурную зависимость удельной теплоёмкости этих веществ, при соответствующих температурах также были обнаружены острые максимумы. Эти экспериментальные факты указывали на какую-то перестройку внутренней структуры вещества при определенной температуре.
Температурная зависимость магнитной восприимчивости χ: а – для парамагнетика, не претерпевающего перехода в упорядоченное состояние вплоть до самых низких температур (χ = С/Т); б – для парамагнетика, переходящего в антиферромагнитное состояние при Т = Tn; в – для поликристаллического антиферромагнетика; г – для монокристаллического антиферромагнетика вдоль оси лёгкого намагничивания (χ||), д – для монокристаллического антиферромагнетика в направлениях, перпендикулярных оси лёгкого намагничивания (χ_|_).
Рис.1
В 1930-х гг. советский физик Л. Д. Ландау и французский физик Л. Неель объяснили указанные выше аномалии переходом парамагнетика в новое состояние, названное антиферромагнитным. Сущность этого перехода состоит в следующем. Парамагнетизм наблюдается в веществах, имеющих в своём составе атомы (ионы) с незаполненными внутренними электронными оболочками. Эти атомы (ионы) обладают атомным магнитным моментом, и их можно рассматривать как элементарные магнитики. При высоких температурах благодаря интенсивному тепловому движению направление этих магнитиков непрерывно беспорядочно меняется. Поэтому среднее по времени значение магнитного момента каждого магнитного иона в отсутствие внешнего поля оказывается равным нулю. Ниже некоторой температуры, получившей название температуры Нееля Tn (ей соответствует максимум на кривой магнитной восприимчивости), силы взаимодействия между магнитными моментами соседних ионов оказываются сильнее, чем разупорядочивающее действие теплового движения. В результате средний магнитный момент каждого иона становится отличным от нуля и принимает определённое значение и направление, в веществе возникает магнитное упорядочение. При антиферромагнетизме упорядочение отличается тем, что средние магнитные моменты всех (или большей части) ближайших соседей любого иона направлены навстречу его собственному магнитному моменту (при ферромагнетизме они все направлены в одну сторону). Другими словами, при антиферромагнетизме одноимённые полюсы соседних элементарных магнитиков направлены взаимно противоположно. В каждом антиферромагнетике устанавливается определённый порядок чередования магнитных моментов. Порядок чередования магнитных моментов вместе с их направлением относительно кристаллографических осей определяет антиферромагнитную структуру вещества. Такую структуру можно представить себе как систему вставленных друг в друга пространственных решёток магнитных ионов (называются подрешётками), в узлах каждой из которых находятся параллельные друг другу магнитные моменты. При антиферромагнетизме во все подрешётки входят магнитные ионы одинакового сорта. Поэтому суммарные магнитные моменты подрешёток строго компенсируются, и антиферромагнетик в целом в отсутствие внешнего поля не имеет результирующего магнитного момента. Под действием внешнего магнитного поля антиферромагнетики приобретают слабую намагниченность. Для магнитной восприимчивости антиферромагнетиков типичны значения 10-4 - 10-6 ед. СГС.
За создание антиферромагнитного порядка и определённую ориентацию магнитных моментов ионов относительно кристаллографических осей ответственны два рода сил: за порядок — силы обменного взаимодействия (электрической природы), за ориентацию — силы магнитной анизотропии. В антиферромагнетизме обменные силы стремятся установить каждую пару соседних магнитных моментов строго антипараллельно. Но они не могут предопределить направление моментов относительно кристаллографических осей. Это направление называется осью лёгкого намагничивания и определяется силами магнитной анизотропии. Последние представляют собой результат магнитного взаимодействия соседних магнитных ионов и более сложных взаимодействий электронов магнитных ионов с действующими внутри кристалла электрическими полями.
 

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Изучение антиферромагнетиков внесло существенный вклад в развитие современных представлений о физике магнитных явлений. Открыты новые типы магнитных структур - слабый ферромагнетизм, геликоидальные структуры и др. Были обнаружены новые явления: пьезомагнетизм, магнетоэлектрический эффект, расширены представления об обменном и других типах взаимодействия в магнетиках. Практического применения антиферромагнетизм пока не нашёл. Это связано с тем, что при переходе в антиферромагнитное состояние большая часть макроскопических физических свойств меняется мало. Исключение составляют высокочастотные свойства антиферромагнетиков. Во многих антиферромагнетиках наблюдается сильное резонансное поглощение электромагнитного излучения для длин волн от 1 см до 0,001 см.

 

Реализации эффекта

Антиферромагнитный резонанс, одна из разновидностей электронного магнитного резонанса. Антиферромагнитный резонанс проявляется как резкое возрастание поглощения электромагнитной энергии, проходящей через антиферромагнетик, при определённых (резонансных) значениях частоты ω и напряжённости приложенного магнитного поля Н. Для антиферромагнетиков характерно упорядоченное расположение магнитных моментов атомов (ионов). Одинаково ориентированные элементарные магнитные моменты образуют в антиферромагнетике так называемые магнитные подрешётки (в простейшем случае — две). При антиферромагнитном резонансе возбуждаются резонансные колебания векторов намагниченности подрешёток как относительно друг друга, так и относительно направления приложенного поля Н. Вид зависимости ω от эффективных магнитных полей в антиферромагнетиках весьма сложен и различается для кристаллов разной структуры. Как правило, одному значению приложенного поля соответствуют две частоты резонанса. Частоты антиферромагнитного резонанса лежат в интервале 10-1000 ГГц.

 

Пьезомагнетизм - пьезомагнитный эффект, возникновение в веществе намагниченности под действием внешнего давления. Пьезомагнетизм может существовать только в веществах, обладающих антиферромагнитной магнитной структурой, и принципиально невозможен в пара- и диамагнетиках. Пьезомагнетизм возникает тогда, когда под действием приложенного давления магнитная симметрия антиферромагнитного кристалла изменяется таким образом, что в нём появляется слабый ферромагнетизм. Намагниченность в образце возникает в результате скоса антиферромагнитных подрешёток или относительного изменения величины их намагниченности. Пьезомагнетизм был экспериментально обнаружен пока лишь в трёх антиферромагнитных кристаллах: MnF2, CoF2 и a-Fe2O3. Величина намагниченности в них Ji пропорциональна приложенному упругому напряжению skl, т. е. Ji = Liklskl. Пьезомагнитный эффект невелик — максимальное значение коэффициента LikCoF2) составляет 2×10-3 гс×см2/кгс. Существует термодинамически обратный эффект — линейная магнитострикция антиферромагнетиков, т. е. пропорциональное магнитному полю (линейное) изменение размеров кристаллов при наложении внешнего поля.

 

Магнетоэлектрический эффект, возникновение в кристаллах намагниченности J при помещении их в электрическое поле Е (J = aЕ). Магнетоэлектрический эффект возможен только в магнитоупорядоченных кристаллах (антиферро-, ферри- и ферромагнетиках). На возможность существования эффекта указали впервые Л. Д. Ландау и Е. М. Лифшиц (1957). И. Е. Дзялошинский (1959) на основании данных о магнитной симметрии кристаллов предсказал, в каких из известных антиферромагнетиков должен наблюдаться магнетоэлектрический эффект. Экспериментально эффект был открыт Д. Н. Астровым (1960) в антиферромагнитном кристалле Cr2O3. Величина эффекта невелика. Максимальное значение коэффициента a для Cr2O3 составляет ~ 2×10-6. Существует и обратный эффект — возникновение электрической поляризации Р при помещении кристалла в магнитное поле Н (Р = aН).

 

Литература

1. Матвеев А.Н., "Электричество и магнетизм", М. - Высшая школа, 1983.

2. Киренский Л. В., "Магнетизм, 2 изд.", М., 1967.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина