Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Сцинтилляция
Свойство определённых веществ излучать свет под действием ионизирующих излучений.

Описание

Сцинтилляция – кратковременная (~10-4 - 10-9 с) световая вспышка (вспышка люминесценции), возникающая в сцинтилляторах под действием ионизирующих излучений. Сцинтилляцию впервые визуально наблюдал У. Крукс (W. Crookes) в 1903 при облучении α-частицами экрана из ZnS. Атомы или молекулы сцинтиллятора за счёт энергии ионизирующего излучения переходят в возбуждённое состояние; последующий переход из возбуждённого в нормальное состояние сопровождается испусканием света. Механизм сцинтилляции, её спектр испускания и длительность высвечивания зависят от природы люминесцирующего вещества, яркость – от природы заряженных частиц. Так, сцинтилляция α-частиц и протонов значительно ярче сцинтилляции электронов. Каждая сцинтилляция – результат действия одной частицы; это обстоятельство используют в сцинтилляционных детекторах для регистрации элементарных частиц.
Люминесценция — свечение вещества, происходящее после поглощения им энергии возбуждения. Впервые люминесценция была описана в XVIII веке. Особого внимания люминесценция не привлекала вплоть до 1948 года, когда советский учёный С. И. Вавилов предложил использовать люминесценцию в анализе химических веществ. Им же дано классическое определение люминесценции: "Будем называть люминесценцией избыток над температурным излучением тела в том случае, если это избыточное излучение обладает конечной длительностью примерно 10-10 секунд и больше". Первая часть определения позволяет отличить люминесценцию от теплового излучения, что особенно важно при высоких температурах, когда термоизлучение приобретает большую интенсивность. Важной особенностью люминесценции является то, что она способна проявляться при значительно более низких температурах, так как не использует тепловую энергию излучающей системы. За это люминесценцию часто называют «холодным свечением». Критерий длительности, введённый Вавиловым, позволяет отделить люминесценцию от других видов нетеплового излучения: рассеяния и отражения света, комбинационного рассеяния, излучения Черенкова. Длительность их меньше периода колебания световой волны (то есть <10-10 c).
Сцинтилляторы— люминофоры, в которых под действием ионизирующих излучений возникают световые вспышки. Сцинтиллятором могут служить многие кристаллофосфоры (ZnS, NaI), органические кристаллы (антрацен, стильбен), растворы пластмасс, инертные газы. Сцинтилляторы обычно применяют в сцинтилляциониых детекторах заряженных частиц.
Процесс возникновения сцинтилляций можно представить при помощи зонной теории твердого тела. В отдельном атоме, не взаимодействующем с другими, электроны находятся на вполне определенных дискретных энергетических уровнях. В твердом теле атомы находятся на близких расстояниях, и их взаимодействие достаточно сильно. Благодаря этому взаимодействию уровни внешних электронных оболочек расщепляются и образуют зоны, отделенные друг от друга запрещенными зонами. Самой внешней разрешенной зоной, заполненной электронами, является валентная зона. Выше ее располагается свободная зона – зона проводимости. Между валентной зоной и зоной проводимости находится запрещенная зона, энергетическая ширина которой составляет несколько электронвольт.
Если в кристалле имеются какие-либо дефекты, нарушения решетки или примесные атомы, то в этом случае возможно появление энергетических электронных уровней, расположенных в запрещенной зоне. При внешнем воздействии, например при прохождении через кристалл быстрой заряженной частицы, электроны могут переходить из валентной зоны в зону проводимости. В валентной зоне останутся свободные места, обладающие свойствами положительно заряженных частиц с единичным зарядом и называемые дырками.
Описанный процесс и является процессом возбуждения кристалла. Возбуждение снимается путем обратного перехода электронов из зоны проводимости в валентную зону, происходит рекомбинация электронов и дырок. Во многих кристаллах переход электрона из зоны проводимости в валентную происходит через промежуточные люминесцентные центры, уровни которых находятся в запрещенной зоне. Указанные центры обусловливаются наличием в кристалле дефектов или примесных атомов. При переходе электронов в две стадии испускаются фотоны с энергией, меньшей ширины запрещенной зоны. Для таких фотонов вероятность поглощения в самом кристалле мала и поэтому световой выход для него много больше, чем для чистого, беспримесного кристалла.
Молекулярные силы связи в органических кристаллах малы по сравнению с силами, действующими в неорганических кристаллах. Поэтому взаимодействующие молекулы практически не возмущают энергетические электронные уровни друг у друга и процесс люминесценции органического кристалла является процессом, характерным для отдельных молекул. В основном электронном состоянии молекула имеет несколько колебательных уровней. Под воздействием регистрируемого излучения молекула переходит в возбужденное электронное состояние, которому также соответствует несколько колебательных уровней. Возможны также ионизация и диссоциация молекул. В результате рекомбинации ионизованной молекулы, она, как правило, образуется в возбужденном состоянии. Первоначально возбужденная молекула может находиться на высоких уровнях возбуждения и через короткое время (~ секунд) испускает фотон высокой энергии. Этот фотон поглощается другой молекулой, причем часть энергии возбуждения этой молекулы может быть израсходована на тепловое движение и испущенный впоследствии фотон будет обладать уже меньшей энергией по сравнению с предыдущим. После нескольких циклов испускания и поглощения образуются молекулы, находящиеся на первом возбужденном уровне; они испускают фотоны, энергия которых может оказаться уже недостаточной для возбуждения других молекул и, таким образом, кристалл будет прозрачным для возникающего излучения.

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Еще в 1903 г. Крукс и другие показали, что если рассматривать экран из сернистого цинка, облучаемый частицами, через увеличительное стекло в темном помещении, то на нем можно заметить появление отдельных кратковременных вспышек света – сцинцилляций. Было установлено, что каждая из этих сцинцилляций создается отдельной частицей, попадающей на экран. Круксом был построен простой прибор, названный спинтарископом Крукса, предназначенный для счета α-частиц. Визуальный метод сцинтилляций был использован в дальнейшем в основном для регистрации α-частиц и протонов с энергией в несколько миллионов электронвольт. Отдельные быстрые электроны регистрировать не удалось, так как они вызывают очень слабые сцинцилляции. Иногда при облучении электронами сернисто-цинкового экрана удавалось наблюдать вспышки, но это происходило лишь тогда, когда на один и тот же кристаллик сернистого цинка попадало одновременно достаточно большое число электронов.
Визуальный метод сцинтилляций позволяет регистрировать очень небольшое число частиц в единицу времени. Наилучшие условия для счета сцинтилляций получаются тогда, когда их число лежит между 20 и 40 в минуту. Конечно, метод сцинтилляций является субъективным, и результаты в той или иной мере зависят от индивидуальных качеств экспериментатора.
Несмотря на недостатки, визуальный метод сцинтилляций сыграл огромную роль в развитии ядерной и атомной физики. С помощью него Резерфорд регистрировал α-частицы при их рассеянии на атомах. Именно эти опыты привели Резерфорда к открытию ядра. Впервые визуальный метод позволил обнаружить быстрые протоны, выбиваемые из ядер азота при бомбардировке их α-частицами, т.е. первое искусственное расщепление ядра.
Визуальный метод сцинтилляций имел большое значение вплоть до тридцатых годов, когда появление новых методов регистрации ядерных излучений заставило на некоторое время забыть его. Сцинтилляционный метод регистрации возродился в конце сороковых годов XX века на новой основе. К этому времени были разработаны фотоэлектронные умножители (ФЭУ), позволяющие регистрировать очень слабые вспышки света. Были созданы сцинтилляционные счетчики, с помощью которых можно увеличить скорость счета в 108 и даже более раз по сравнению с визуальным методом, а также можно регистрировать и анализировать по энергии как заряженные частицы, так и нейтроны и α-лучи.

 

Реализации эффекта

Сцинтилляционный детектор—детектор частиц, действие которого основано на регистрации световых вспышек в видимой или УФ-области, возникающих при прохождении заряженных частиц через сцинтиллятор. Доля энергии, конвертированная в световую вспышку от полной энергии, потерянной частицей в сцинтилляторе, называют конверсионной эффективностью. Она является основным параметром детектора. Иногда вместо конверсионной эффективности используют удельный световой выход (световыход)— число образованных частицей фотонов на единицу потерянной энергии, или среднюю энергию, расходуемую на образование одного фотона.
Механизмы преобразования энергии частицы в световую вспышку различны для разных сцинтилляторов. В большинстве случаев они могут быть сведены к следующей схеме: 1) ионизация и возбуждение атомов и молекул, образование радикалов; 2) перенос энергии возбуждения к центрам свечения (радиационный, резонансный, экситонный, электронно-дырочный); 3) возбуждение и высвечивание центров свечения. Нейтральные частицы регистрируются благодаря передаче энергии заряженным: γ-кванты - по электронам и позитронам, нейтроны - по протонам отдачи (при упругом рассеянии) или по заряженным частицам, возникающим в ядерных реакциях нейтронов с веществом сцинтиллятора.
Основные элементы сцинтилляционного детектора (рис. 1)—сцинтиллятор и соединённый с ним оптически фоторегистратор, преобразующий энергию световой вспышки в электрический импульс. В качестве фоторегистратора обычно используют фотоэлектронный умножитель (ФЭУ). Световые фотоны, попадая на фотокатод ФЭУ, выбивают из него электроны, которые фокусируются иа 1-й динод, размножаются динодной системой в результате процесса вторичной электронной эмиссии и окончательно собираются на аноде ФЭУ, создавая в его цепи электрический импульс.
Схема сцинтилляционного детектора: Сц—сцинтиллятор. Св-—светопровод, Ф—фотокатод, Д—диноды, А — анод
Рис.1

Литература

1. Физическая энциклопедия. гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.

2. Дж.Биркс. Сцинтилляционные счетчики. М., ИЛ, 1955.

3. В.О.Вяземский, И.И. Ломоносов, В.А. Рузин. Сцинтилляционный метод в радиометрии. М.,Госатомиздат, 1961.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина