Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Лазерная химия
Инициирование и управление химическими реакциями лазерным излучением

Описание

Лазерная химия - изучает химические процессы, стимулируемые лазерным излучением, в которых решающую роль играют специфические свойства лазерного излучения. Так, высокая монохроматичность лазерного излучения позволяет селективно возбуждать молекулы одного вида, при этом молекулы др. видов остаются невозбужденными. При этом селективность возбуждения ограничена лишь степенью перекрывания полос в спектре поглощения вещества. Подбирая частоту возбуждения, удается не только осуществлять избирательную активацию молекул, но и менять глубину проникновения излучения в зону реакции. Использование импульсов излучения малой длительности позволяет в принципе снять ограничение селективности, связанное с обменом энергией между различными молекулами или между различными химическими связями в одной молекуле. Большая интенсивность лазерного излучения дает возможность получать возбужденные молекулы или радикалы в высоких концентрациях. Наконец, возможность фокусировки лазерного излучения позволяет вводить энергию локально, в определенную область объема, занимаемого реагирующей смесью. Лазерное воздействие на химической реакции может быть тепловым и фотохимическим. При тепловом воздействии реагирующая смесь только нагревается, энергия распределяется равномерно по всем степеням свободы реагирующих молекул.
Преимущество лазерного нагрева – возможность вводить энергию в нужное место реакционного объема и за очень короткое время, а также избегать нежелательного контакта реагентов с нагреваемой поверхностью реактора. Локальный нагрев реагентов при этом может достигать тысяч градусов, что крайне трудно при других способах нагрева.
Химическая реакция часто представляет собой нелинейный процесс, имеющий сложное пространственно-временное поведение и описываемый нелинейными дифференциальными уравнениями с бифуркационными параметрами. Таким параметром могут быть температура или параметр, характеризующий распределение тепла в реагирующем объеме. Воздействие лазерного излучения на реагирующую смесь вблизи точек бифуркации позволяет резко изменять режим теплового химического процесса при малых затратах лазерной энергии. Фотохимическое воздействие лазерного излучения дает возможность достигать концентраций возбужденных молекул или радикалов, намного превышающих равновесное значение при данной температурере. Из-за большой интенсивности излучения осуществляется многоквантовое возбуждение, при котором в одном элементарном акте возбуждения поглощается одновременно несколько квантов излучения. Таким образом, можно получать молекулы в высоковозбужденных состояниях с помощью широко доступных лазеров видимого и ближнего УФ диапазонов и повысить избирательность возбуждения, т. к. в далеком УФ диапазоне полосы поглощения мн. молекул сильно перекрываются. Hаиболее специфично фотохимическое действие лазерного излучения в ИК области, поскольку создать в этой области длин волн источники некогерентного излучения, сравнимые по мощности с лазерами и позволяющие осуществлять фотолиз, практически невозможно. Под действием лазерного ИК излучения стимулирование химических процессов в газах происходит путем резонансного возбуждения колебательной степеней свободы молекул. Подбором условий (давление газа, интенсивность и частота лазерного излучения) удается достичь высокой сверхравновесной концентрации колебательно возбужденных молекул и осуществить их диссоциацию (фрагментацию). Достаточно коротким (10-7 с) и интенсивным (107-109 Вт/см2) импульсом излучения при малом давлении (доли мм рт. ст.) оказывается возможным возбудить и фрагментировать молекулы за времена более короткие, чем время межмолекулярного обмена энергией при их столкновениях. Важным является то, что при этом достигается высокая межмолекулярная селективность. Достигаемая селективность активации может быть использована для лазерного изотопов разделения и получения особо чистых веществ. Предполагается, что с помощью лазерного ИК излучения окажется возможной и внутримолекулярная селективность активации молекул по заранее обусловленной химической связи (или группе связей). Препятствием на пути к этому является быстрый обмен энергией между различными типами колебаний, резко ускоряющийся при увеличении колебательной энергии.
Фотохимическое действие лазерного излучения в видимом и УФ диапазонах менее специфично, чем в ИК области, тем не менее благодаря большой интенсивности излучения оно используется для возбуждения молекул в высоколежащие электронные уровни энергии и ионизации, которая происходит в результате поглощения нескольких фотонов в одном элементарном акте реакции. Это позволяет отказаться от использования коротковолнового излучения обычных источников, заменив его сравнительно длинноволновым лазерным излучением.
Схема реакции тетрафторгидразина (N2F4) и окиси азота (NO) при нагревании (вверху) и при резонансном возбуждении связи N—F лазерным излучением (внизу). Спирали изображают хим. связи.
Рис.1
 

 

 

Ключевые слова

 

Разделы наук

 

Применение эффекта

Лазерное излучение используют для стимулирования реакций в твердых телах, в частности при создании больших интегральных схем в микроэлектронике. Соответствующие реакции могут быть и чисто тепловыми, и фотохимическими. Решающий фактор - возможность острой фокусировки лазерного излучения и гибкого управления им. В биохимии лазеры применяют для воздействия на различные компоненты макромолекул, например на остатки аминокислот белков. Лазерное излучение также влияет на ферментативные реакции, коагуляцию крови, иммунную активность антител и др. процессы, в которых существенны процессы изменения конформации белковых макромолекул. Поскольку это требует меньшей энергии, чем энергия химической связи, такое воздействие возможно при сравнительно малых дозах лазерного облучения. Применение лазерного излучения в химии наиболее эффективно для процессов, связанных с получением дорогостоящих продуктов и изделий (разделение изотопов, создание интегральных схем для микроэлектроники, синтез особо чистых веществ и реактивов, потребляемых в небольших количествах). Использование лазеров в крупнотоннажных производствах, по-видимому, пойдет по пути инициирования технологических процессов, базирующихся на цепных реакциях. При длине цепи L каждый химически активный центр, созданный лазерным излучением, даст L молекул продукта. Тогда энергетическая стоимость продукта оказывается равной Qh-1L-1, где Q - затраты лазерной энергии на создание активной молекулы или радикала, h - кпд лазера. При большой длине цепи (~103—104) стоимость лазерной энергии перестает быть решающим фактором даже для крупнотоннажного производства.

Реализации эффекта

Лазерное разделение изотопов - разделение изотопов, основанное на изотопич. сдвиге уровней энергии атомов и молекул и использовании резонансного воздействия лазерного излучения.
Интенсивное монохроматическое излучение лазера, вызывая переходы между соответствующими энергетическими уровнями атомов и молекул, переводит молекулы, которые содержат выбранный изотоп или его атомы, в возбуждённое состояние вплоть до их ионизации или диссоциации молекул. После этого становится возможным отделение возбуждённых атомов и молекул различными физическими (напр., ионы — электрическим полем) или химическими методами. Для обеспечения эффективности процесса разделения необходимо, чтобы резонансные переходы были достаточно узкими и чтобы скорость извлечения изотопа была больше, чем скорость передачи возбуждения др. изотопам. Поэтому для лазерного разделения изотопов удобны газообразные вещества, в спектрах которых изотопический сдвиг больше уширения спектральных линий. Селективность и коэффициент разделения увеличиваются при уменьшении плотности газа или использовании молекулярных и атомных пучков, но при этом уменьшается производительность. Т. о., возникает та же проблема, что и в традиционных методах разделения изотопов: чем больше коэффициент разделения, тем меньше производительность.
Сформировались две основные схемы лазерного разделения изотопов — многоступенчатая и одноступенчатая. В многоступенчатой схеме атомы или молекулы резонансным излучением лазера переводятся в возбуждённое состояние, из которого под действием других лазеров они ионизируются или молекулы диссоциируют. Величина квантов излучения второго лазера должна быть меньше энергии ионизации атома или диссоциации молекулы или энергии молекулы в невозбуждённом состоянии. Процессы второй ступени должны происходить быстрее, чем передача возбуждения др. изотопам. Это означает, что источники излучения должны быть достаточно мощными. На второй ступени возможно применение и нелазерных источников возбуждения: импульсных газоразрядных ламп, электрических полей и т. п.
В одноступенчатой схеме мощное лазерное излучение вызывает фиксируемое изменение свойств атомов или молекул при переходе сразу из основного состояния. В этих случаях для отделения возбуждённых молекул необходимо использовать взаимодействия, энергия которых сравнима с величиной кванта возбуждения, напр. взаимодействия на границе раздела фаз.

 

Литература

1. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994

2. Летохов В. С. // УФН. 1978, т. 125, в. 1, с. 57.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина