Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Фотометр
Фотометр

Описание

Фотометр - прибор для измерения каких-либо из фотометрических величин, чаще других – одной или нескольких световых величин. При использовании фотометра осуществляют определённое пространственное ограничение потока излучения и регистрацию его приёмником излучения с заданной спектральной чувствительностью. Освещённость измеряют люксметрами, яркость – яркомерами, световой поток и световую энергию – с помощью интегрирующего фотометра. Приборы для измерения цвета объекта называют колориметрами. Если в качестве приёмника используется глаз, фотометры называются визуальными, или зрительными, если же применяется какой-либо физический приёмник, фотометры называются физическими. Оптический блок фотометра, иногда называемый фотометрической головкой, содержит линзы, светорассеивающие пластинки, ослабители света, светофильтры, диафрагмы и приёмник излучения. Чаще всего в фотометре с физическими приёмниками поток излучения преобразуется в электрический сигнал, регистрируемый устройствами типа микроамперметра, вольтметра и т.д. В импульсных фотометрах применяют регистрирующие устройства типа электрометра, запоминающего осциллографа, пикового вольтметра. В визуальном фотометре равенство яркостей двух полей сравнения, освещаемых по отдельности сраниваемыми световыми потоками, устанавливается глазом, который располагается у окуляра фотометрической головки.
Оптические схемы фотометров (рис.1) для определения размерных фотометрических величин обеспечивают постоянство или изменение по определённому закону фактора геометрического.  Для фотометров с абсолютной градуировкой характерны большие систематические погрешности измерений (осуществить их с погрешностью менее 5% затруднительно). Квалифицированные специалисты в хорошо оборудованных лабораториях обычно выполняют измерения с погрешностями от 10% до 20%. Оплошности в самой постановке измерений могут вызвать увеличение погрешностей до 50% и более.
Точность фотометров для измерений отношения потоков излучения (пропускания коэффициента и отражения коэффициента) более высока. Они строятся по одноканальной и двухканальной оптическим схемам. В одноканальном фотометре измеряется относительное уменьшение потока излучения при установке образца на пути пучка лучей. В двухканальном фотометре ослабление потока излучения образцом осуществляют, сравнивая потоки в измерительном и т. н. опорном каналах. Для уравнивания потоков излучения в каналах применяются регулируемые диафрагмы, клин фотометрический и др. подобные устройства. Коэффициенты пропускания и отражения светорассеивающих образцов измеряют также в интегрирующих фотометрах.
Принципиальные оптические схемы фотометров для измерения: а — освещенности и экспозиции, а также (с привлечением закона квадратов расстояний) силы света и освечивания; б — силы света и освечивания (т. н. телецентрическим методом); в — яркости и интеграла импульса яркости (с применением фокусирующей оптической системы); г — яркости (с применением габаритной диафрагмы). И — источник света; П — приемник излучения с исправляющими его спектральную чувствительность светофильтрами и ослабителями; О — объектив с фокусным расстоянием f; D — диафрагма, устанавливаемая в фокальной плоскости (б) или в плоскости изображения источника (в); Da — апертурная диафрагма; Dr — габаритная диафрагма; a и b — угловые размеры фотометрируемых пучков лучей.
Рис.1
На рис.1 в и г представлены две принципиальные оптические схемы яркомера с физическими приёмниками излучения. В яркомере, построенном по первой из этих схем, изображение светящего тела источника И создаётся в плоскости диафрагмы Д, ограничивающей размеры фотометрируемой части этого тела. Постоянство чувствительности такого яркомера при перемещении объектива обеспечивается апертурной диафрагмой Да, неподвижной относительно Д. В более простом яркомере, построенном по второй схеме (рис. 1г), фотометрируемый пучок лучей ограничивают габаритная диафрагма Дг и входной зрачок приёмника П. Диафрагма Дг располагается вблизи светящего тела или (при фотометрировании объектов больших размеров) на некотором удалении от него. Угол поля зрения такого яркомера можно скачкообразно изменять, перекрывая диафрагму Дг положительной линзой с фокусным расстоянием l0 и превращая его таким образом в яркомер по схеме (рис. 1в). Простейшим визуальным яркомером (эквивалентная оптическая схема которого соответствует рис. 1в) является глаз человека или животного, непосредственно воспринимающий яркость.

 

 

Ключевые слова

 

Области техники и экономики

 

Применение эффекта

Экспериментальные методы фотометрии основаны на абсолютных и относительных измерениях потока излучения различными селективными и неселективными приёмниками излучения (т. е. приёмниками, реакция которых зависит или не зависит от длины волны излучения). Для определения размерных фотометрических величин применяют либо фотометры с непосредственным сравнением неизвестного и известного потоков, либо фотометры, предварительно градуированные в соответствующих единицах измерения энергетических или редуцированных фотометрических величин. В частности, для передачи значений световых величин обычно используют сличаемые с государственными световыми эталонами образцовые и рабочие светоизмерительные лампы – источники с известными фотометрическими характеристиками. Фотометрия лазерного излучения в основном построена по принципу использования образцовых и рабочих спектрально неселективных приёмников излучения, сличаемых с государственными эталонами мощности и энергии когерентного излучения лазеров. Измерение безразмерных величин t и r выполняется фотометрами с применением относительных методов, путём регистрации отношения реакций линейного приемника излучения на соответствующие потоки излучения. Применяется также уравнивание реакций линейного или нелинейного приёмника излучения изменением по определённому закону в известное число раз сравниваемых потоков излучения.
Теоретические и экспериментальные методы фотометрии находят применение в светотехнике и технике сигнализации, в астрономии и астрофизике, при расчёте переноса излучения в плазме газоразрядных источников света и звёзд, при химическом анализе веществ, в пирометрии, при расчётах теплообмена излучением и во многих др. областях науки и производства.

 

Реализации эффекта

Интегрирующий  фотометр - шаровой фотометр - прибор, позволяющий определять световой поток по одному измерению. Основной частью Ф. и. является фотометрический шар (шар Ульбрихта), который представляет собой полый шар (или полое тело иной формы) с внутренней поверхностью, окрашенной неселективной белой матовой краской. Диаметр шара должен значительно превышать размеры фотометрируемых источников света, вследствие чего для измерения световых потоков, например люминесцентных светильников, строят Ф. и. диаметром до 5 м. Освещённость любой точки шара, защищенной небольшим экраном от прямых лучей горящего в шаре источника, пропорциональна световому потоку этого источника (в общем случае – потоку излучения). Освещённость экранированного участка измеряется тем или иным способом, например с помощью встроенного в шар фотоэлемента. Ф. и. широко применяется при световых и цветовых измерениях, в частности для измерения световых потоков ламп и светильников, отражения коэффициентов и пропускания коэффициентов.

 

Люксметр - переносный прибор для измерения освещённости, один из видов фотометров. Простейший люксметр состоит из селенового фотоэлемента, который преобразует световую энергию в энергию электрического тока, и измеряющего этот фототек стрелочного микроамперметра со шкалами, проградуированными в люксах. Разные шкалы соответствуют различным диапазонам измеряемой освещённости; переход от одного диапазона к другому осуществляют с помощью переключателя, изменяющего сопротивление электрической цепи. (Например, люксметр типа Ю-16 имеет 3 диапазона измерений: до 25, до 100 и до 500 лк.) Ещё более высокие освещённости можно измерять, используя надеваемую на фотоэлемент светорассеивающую насадку, которая ослабляет падающее на элемент излучение в определённое число раз (постоянное в широком интервале длин волн излучения).
Кривые относительной спектральной чувствительности селенового фотоэлемента и среднего человеческого глаза неодинаковы; поэтому показания люксметра зависят от спектрального состава излучения. Обычно приборы градуируются с лампой накаливания, и при измерении простыми люксметром освещённости, создаваемой излучением иного спектрального состава (дневной свет, люминесцентное освещение), применяют полученные расчётом поправочные коэффициенты. Погрешность измерений такими люксметрами составляет не менее 10% от измеряемой величины.
Люксметры более высокого класса оснащаются корригирующими светофильтрами, в сочетании с которыми спектральная чувствительность фотоэлемента приближается к чувствительности глаза; насадкой для уменьшения ошибок при измерении освещённости, создаваемой косо падающим светом; контрольной приставкой для поверки чувствительности прибора. Пространственные характеристики освещения измеряют люксметры с насадками сферической и цилиндрической формы. Имеются модели люксметров с приспособлениями для измерения яркости. Точность измерений лучшими люксметрами — порядка 1%.

 

Литература

1. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.

2. Гершун А. А., Избр. труды по фотометрии и светотехнике, М., 1958

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина