Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

КМРТ
Квантовый магнетометр резонансного типа

Описание

Квантовый магнитометр - прибор для измерения напряжённости магнитных полей, основанный на квантовых явлениях. Такими явлениями служат свободная упорядоченная прецессия ядерных или электронных магнитных моментов, квантовые переходы между магнитными подуровнями атомов, а также квантовые изменения магнитного потока в сверхпроводящем контуре.
Уровни энергии атомных ядер, электронов атомов или молекул, обладающих магнитными моментами, в магнитном поле расщепляются на несколько подуровней, разность энергий между которыми ΔE зависит от величины напряжённости Н магнитного поля и во многих случаях пропорциональна Н. Частицы могут переходить с одного магнитного подуровня на другой, поглощая или излучая порцию (квант) электромагнитной энергии, равную: ћω, где ћ - постоянная Планка, ω — частота электромагнитного поля. Частота ω точно равна частоте прецессии магнитного момента вокруг направления магнитного поля, т. е. ω = gН, где g — гиромагнитное отношение. Частота 0.1 лежит в радиодиапазоне. Измеряя её, например по резонансному поглощению веществом радиоволн, можно определить напряжённость магнитного поля Н. Так как коэффициент пропорциональности между частотой ω и полем Н выражается через атомные константы, характеризующиеся чрезвычайно высокой стабильностью и воспроизводимостью, то чувствительность таких магнитометров высока. Наиболее совершенные магнитометры этого типа обладают чувствительностью до 10–8 э или 10–3 гамм (1 гамма = 10–5 э).
Принцип работы КМРТ основан на явлении прецессии магнитного момента электрона (для электронного КМРТ) или протона (для ядерного КМРТ, в котором используются ядра молекул водорода) в магнитном поле. Если электрон (или протон) помещен во внешнее магнитное поле, из-за своего собственного магнитного момента, он испытает магнитный вращающий момент. Поскольку он также имеет угловой момент, этот магнитный вращающий момент приведет электрон (протон) к прецессии, ее уровень зависит от величины внешнего магнитного поля. В электронном КМРТ используется прецессия в магнитном поле магнитных моментов неспаренных электронов парамагнитных атомов, частота которой в несколько сот раз больше частоты прецессии протонов. Частота прецессии для электронов в поле Н ~ 1 э равна 2,8 Мгц. Изменение поля на 1 гамму приводит к изменению частоты прецессии на 28 гц, что в 660 раз больше, чем для протонных магнитометров.
Датчиком протонного магнитометра является ампула с диамагнитной жидкостью, молекулы которой содержат атомы водорода (например, воду или бензол). Магнитные моменты молекул обусловлены только магнитными моментами ядер атомов водорода — протонами (электронные магнитные моменты в молекулах таких жидкостей скомпенсированы). Ампулу помещают в катушку L, через которую пропускают в течение нескольких секунд ток, создавая в ней вспомогательное магнитное поле H0 напряжённостью в несколько сот э (рис. 1). Под действием поля H0 магнитные моменты протонов ориентируются и жидкость приобретает суммарный магнитный момент М. После выключения тока магнитные моменты протонов начинают прецессировать вокруг направления измеряемого магнитного поля Н с частотой ω = gpH, где gр = (2,67513 ± 0,00002) 104 гс–1сек–1— магнитомеханическое отношение для протонов. Прецессия суммарного магнитного момента М приводит к появлению в катушке П переменной эдс с частотой, равной частоте прецессии ω. В магнитном поле Земли H3 ~ 0,6 э, ω = 2,55 кгц. Прецессия постепенно затухает благодаря процессу релаксации, обусловленному слабым взаимодействием между протонами и атомами парамагнитных примесей, растворимых в рабочей жидкости. Для чистой воды время релаксации ~3 сек. Для повторного измерения поля цикл повторяют. Цикличность работы датчика устраняют, например, с помощью системы из 2 датчиков, работающих поочерёдно.
Схема протонного магнитометра: L — катушка, создающая вспомогательное намагничивающее поле H0; П — катушка, в которой возникает эдс, обусловленная прецессией ядерных моментов вокруг измеряемого магнитного поля Н; У — усилитель сигнала; Ч — частотомер, градуированный в э.
Рис.1
 
 

 

 

Ключевые слова

 

Области техники и экономики

 

Используемые естественнонаучные эффекты

Ядерный магнитный резонанс импульсный двойной (Ядерный магнитный резонанс импульсный двойной)
Электронный парамагнитный резонанс (ЭПР)
Ларморовская прецессия (Ларморовская прецессия)
Диамагнетизм свободных электронов во внешнем магнитном поле (Диамагнетизм Ландау)

 

Разделы естественных наук используемых естественнонаучных эффектов

2Атомная физика, излучение и поглощение энергии атомами и молекулами
1Волновые свойства частиц
1Взаимодействие света с веществом
2Электромагнитные колебания и волны
2Магнитная поляризация вещества
4Магнитное поле
1Электрическая поляризация вещества
1Электрическое поле
2Квантовая механика
1Переменные электрические поле и ток
1Динамика

 

Применение эффекта

Квантовые магнитометры применяются главным образом для измерения напряжённости слабых магнитных полей и, в частности, магнитного поля Земли и его аномалий как на её поверхности, так и на больших высотах, соответствующих орбитам баллистических ракет и искусственных спутников Земли, для измерения магнитных полей планет Солнечной системы в космическом пространстве. Квантовые магнитометры применяются также для разведки полезных ископаемых, для магнитного каротажа, поиска затонувших судов и т.п.
 КМРТ применяются для измерения напряжённостей слабых магнитных полей.
Существуют электронные и ядерные резонансные квантовые магнетометры (КМРТ).
Электронный квантовый магнитометр аналогичен протонному. В нём используется прецессия в магнитном поле магнитных моментов неспаренных электронов парамагнитных атомов, частота которой в несколько сот раз больше частоты прецессии протонов

Реализации эффекта

Электронный квантовый магнитометр аналогичен протонному. В нём используется прецессия в магнитном поле магнитных моментов неспаренных электронов парамагнитных атомов, частота которой в несколько сот раз больше частоты прецессии протонов. Частота прецессии для электронов в поле Н ~ 1 э равна 2,8 Мгц. Изменение поля на 1 гамму приводит к изменению частоты прецессии на 28 гц, что в 660 раз больше, чем для протонных магнитометров.
Для получения достаточно больших эдс применяют методы динамической поляризации ядер. При этом ориентация магнитных моментов протонов осуществляется благодаря их взаимодействию с электронными моментами парамагнитных ионов (в воде растворяют парамагнитную соль). Таким способом ядерную намагниченность удастся увеличить в несколько сот раз. Применение вещества, содержащего радикалы нитрозодисульфоната калия, позволяет увеличить намагниченность ещё примерно в 40 раз.

 

Литература

1. Физическая энциклопедия / гл.ред. Прохоров А.М. - М.: Большая российская энциклопедия. 1994.

2. Лукьянец В.А. Физические эффекты в машиностроении. - М.:Машиностроение. 1993

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина