Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

ЖРД с турбонасосным агрегатом
Жидкостные ракетные двигатели с турбонасосным агрегатом

Анимация

Описание

Схемы жидкостных ракетных двигателей (ЖРД) отличаются главным образом системами подачи топлива. В ЖРД любой схемы давление топлива перед камерой сгорания должно быть больше давления в камере, иначе невозможно будет подавать компоненты топлива через форсунки. Повысить давление топлива в ЖРД можно по-разному. В ЖРД с насосной системой подачи топлива давление в баках значительно меньше, чем давление в камере. В такой системе повышение давления компонентов достигается использованием турбонасосных агрегатов (ТНА), устанавливаемых на магистралях подачи топлива. Эту систему подачи называют также системой с разгруженными (насосная) баками.
ЖРД с ТНА бывают 2 основных схем: без дожигания генераторного газа и с дожиганием. В ЖРД с ТНА без дожигания генераторного газа продукты газогенерации после срабатывания в турбине выбрасываются в окружающую среду через вспомогательные сопла, часто являющиеся рулевыми. Генераторный газ, продукт неполного сгорания, имеет относительно низкую температуру, а вспомогательные сопла меньшую степень расширения, чем основные, поэтому удельный импульс, получаемый при истечении продуктов сгорания через вспомогательные сопла, меньше удельного импульса основной камеры ЖРД, т. е. имеет место потеря удельного импульса. В ЖРД с дожиганием генераторного газа относительно низкотемпературные продукты газогенерации, получаемые из основных компонентов топлива, после срабатывания в турбине направляются в камеру ЖРД для дожигания. Такие ЖРД не имеют потери удельного импульса, обусловленной приводом ТНА
Схема подачи топлива в жидкостном ракетном двигателе с турбонасосным агрегатом: 1 — топливные баки; 2 — парогенератор; 3 — турбонасосный агрегат; 4 — форсунки; 5 — камера сгорания; 6 — сопло.
Рис. 1
Топливная система ЖРД включает в себя все элементы, служащие для подачи топлива в камеру сгорания — топливные баки, трубопроводы, турбонасосный агрегат (ТНА) — узел, состоящий из насосов и турбины, смонтированных на едином валу, смесительная головка, и клапаны, регулирующие подачу топлива.
Насосная подача топлива позволяет создать в камере двигателя высокое давление, от десятков атмосфер до 250ат (ЖРД 11Д520 РН Зенит). Высокое давление обеспечивает большую степень расширения рабочего тела, что является предпосылкой для достижения высокого значения удельного импульса. Кроме того, при большом давлении в камере сгорания достигается лучшее значение тяговооружённости двигателя — отношения величины тяги к весу двигателя. Чем больше значение этого показателя, тем меньше размеры и масса двигателя (при той же величине тяги), и тем выше степень его совершенства. Преимущества насосной системы особенно сказываются в ЖРД с большой тягой — например, в двигательных установках ракет-носителей.
На рис.1 отработанные газы из турбины ТНА поступают через смесительную головку в камеру сгорания вместе с компонентами топлива. Такой двигатель называется двигателем с замкнутым циклом (иначе — с закрытым циклом), при котором весь расход топлива, включая используемое в приводе ТНА, проходит через камеру сгорания ЖРД. Давление на выходе турбины в таком двигателе, очевидно, должно быть выше, чем в камере сгорания ЖРД, а на входе в газогенератор, питающий турбину, — ещё выше. Чтобы удовлетворить этим требованиям, для привода турбины используются те же компоненты топлива (под высоким давлением), на которых работает сам ЖРД (с иным соотношением компонентов, как правило, — с избытком горючего, чтобы снизить тепловую нагрузку на турбину).
Альтернативой замкнутому циклу является открытый цикл, при котором выхлоп турбины производится прямо в окружающую среду через отводной патрубок. Реализация открытого цикла технически проще, поскольку работа турбины не связана с работой камеры ЖРД, и в этом случае ТНА вообще может иметь свою независимую топливную систему, что упрощает процедуру запуска всей двигательной установки. Но системы с замкнутым циклом имеют несколько лучшие значения удельного импульса, и это заставляет конструкторов преодолевать технические трудности их реализации, особенно для больших двигателей ракет-носителей, к которым предъявляются особо высокие требования по этому показателю.

 

 

Ключевые слова

 

Области техники и экономики

 

Применение эффекта

В жидкостных ракетах двигатели часто помимо основной функции — создания тяги, выполняют также роль органов управления полётом. Уже первая управляемая баллистическая ракета Фау-2 управлялась с помощью 4-х графитных газодинамических рулей, помещённых в реактивную струю двигателя по периферии сопла. Отклоняясь, эти рули отклоняли часть реактивной струи, что изменяло направление вектора тяги двигателя, и создавало момент силы относительно центра масс ракеты, что и являлось управляющим воздействием. Этот способ заметно снижает тягу двигателя, к тому же графитные рули в реактивной струе подвержены сильной эрозии и имеют очень малый временной ресурс.
В современных системах управления ракетами используются поворотные камеры ЖРД, которые крепятся к несущим элементам корпуса ракеты с помощью шарниров, позволяющих поворачивать камеру в одной или в двух плоскостях. Компоненты топлива подводятся к камере с помощью гибких трубопроводов — сильфонов. При отклонении камеры от оси, параллельной оси ракеты, тяга камеры создаёт требуемый управляющий момент силы. Поворачиваются камеры гидравлическими или пневматическими рулевыми машинками, которые исполняют команды, вырабатываемые системой управления ракетой.

 

Реализации эффекта

Новизной двигателей Вальтера было использование в качестве энергоносителя и одновременно окислителя концентрированной перекиси водорода, разлагаемого с помощью различных катализаторов, главным из которых был перманганат натрия, калия или кальция. В сложных реакторах двигателей Вальтера в качестве катализатора применялось и чистое пористое серебро. При разложении перекиси водорода на катализаторе выделяется большое количество теплоты причём образующаяся в результате реакции разложения перекиси водорода вода превращается в пар, а в смеси с одновременно выделяющимся во время реакции чистым кислородом образует так называемый «парогаз». Температура парогаза в зависимости от степени начальной концентрации перекиси водорода может достигать 700 С-800 С.
Концентрированная примерно до 80-85 % перекись водорода в разных немецких документах носила название «оксилин», «топливо Т» (T-stoff), «аурол», «пергидроль». Раствор катализатора имел название Z-stoff.
Топливо для двигателей Вальтера состявшее из T-stoff и Z-stoff называлось однокомпонентным поскольку катализатор не является компонентом.
В других типах двигателей Вальтера использовалось двухкомпонентное топливо состоящее из T-stoff и например С-stoff (смесь 30 % гидразина, 57 % метанола, 13 % воды). Например на такой смеси работал двигатель Walter HWK RI-203.
Температура в камере сгорания двигателей использовавших T-stoff и С-stoff или иные жидкие горючие (например метанола, нефти, декалина) была значительно более чем температура паро-кислородного парогаза и достигала температур камеры сгорания ЖРД использующих в качестве окислителя азотную кислоту или тетроксид азота. К.п.д. двигателей Вальтера с использованием выделяющегося при реакции разложения перекиси водорода кислорода путём сжигания в нём жидких органических топлив был значительно выше чем к.п.д. простой реакции разложения T-stoff на катализаторе.
В ЖРД двигателях Вальтера, образовывающийся в реакторе, которым являлась часто сама камера сгорания (разложения), парогаз T-stoff и Z-stoff создавал реактивную тягу, так же как и газы горения T-stoff и С-stoff. В некоторых типах двигателя Вальтера T-stoff не соединялся непосредственно с С-stoff а сначала разлагался с помощью Z-stoff, и только затем горячий окислительный парогаз окислял различные С-stoff-горючие в камере сгорания. В двигателях Вальтера ПГТУ образовывающийся в реакторе парогаз T-stoff и Z-stoff или T-stoff и С-stoff направлялся на рабочие лопатки турбины где происходило преобразование химической энергии топлива в механическую энергию вращающегося вала позволяющего передавать энергию например на двигательные винты подводной лодки или торпеды.
Более сложный цикл необходимый для безследных ПГТУ подводных лодок или торпед включал в себя сжигание в T-stoff солярового масла, образующийся газ сгорания совершал работу в турбине и затем направлялся в конденсатор где конденсировался водяной пар, а углекислый газ сжижался и выбрасывался из подводной лодки при помощи барботирования через мелкие отверстия специального выпускного устройства. Устремляясь к поверхности воды мелкие пузырьки углекислого газа растворялись в воде чем и достигалась практическая бесследность подводной лодки. В некоторых циклах Вальтера турбина не вращала винты через механический редуктор, а приводила в действие электрогенератор который уже приводил в действие ходовые электромоторы подводной лодки, а кроме того при необходимости мог заряжать аккумуляторы.

 

Литература

1. Стечкин Б. С. Избранные труды. Теория тепловых двигателей. — М.: Наука, 1977. — 410 с.

2. Казанджан П. К., Алексеев Л. П., Говоров А. Н., Коновалов Н. Е., Ю. Н. Нечаев, Павленко В. Ф., Федоров Р. М. Теория реактивных двигателей. М. Воениздат. 1955

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина