Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Атомная электростанция
Атомная электростанция

Описание


Атомная электростанция (АЭС) предназначена для преобразования атомной (ядерной) энергии в электроэнергию, кроме того, как и тепловые электростанции атомная также производит тепло.
Существует несколько разновидностей атомных электростанций, однако можно выделить 6 основных элементов, составляющих каждую электростанцию (рисунок 1): реактор, образованный несколькими десятками тепловыделяющих сборок (ТВС) (каждая сборка, в свою очередь, состоит из нескольких тепловыделяющих элементов) и системой управляющих интенсивностью ядерной реакции стержней, теплообменник (несколько контуров и парогенератор), паровая турбина (тепловая машина), конденсатор (в котором осуществляется конденсация пара), регулятор давления пара и электрический генератор.
Устройство атомной электростанции
Устройство атомной электростанции
Рисунок 1
Энергия, выделяемая в активной зоне реактора, передаётся теплоносителю первого контура (часто в качестве теплоносителя используется вода). Далее теплоноситель подаётся насосами в теплообменник (парогенератор), где нагревает до кипения воду второго контура. Полученный при этом пар поступает в турбины, вращающие электрогенераторы. На выходе из турбин пар поступает в конденсатор, где охлаждается большим количеством воды, поступающим из водохранилища.
Компенсатор давления представляет собой довольно сложную и громоздкую конструкцию, которая служит для выравнивания колебаний давления в контуре во время работы реактора, возникающих за счёт теплового расширения теплоносителя. Давление в 1-м контуре может доходить до 160 атмосфер (реактор ВВЭР-1000). Помимо воды, в различных реакторах в качестве теплоносителя может применяться также расплавленный натрий или газ. Использование натрия позволяет упростить конструкцию оболочки активной зоны реактора (в отличие от водяного контура, давление в натриевом контуре не превышает атмосферное), избавиться от компенсатора давления, но создаёт свои трудности, связанные с повышенной химической активностью этого металла.
Общее количество контуров может меняться для различных реакторов, например, в реакторах типа ВВЭР (Водо-Водяной Энергетический Реактор) используется два водяных контура. Реакторы типа РБМК (Реактор Большой Мощности Канального типа) используют один водяной контур, а реакторы БН (реактор на Быстрых Нейтронах) — два натриевых и один водяной контуры. В случае невозможности использования большого количества воды для конденсации пара, вместо использования водохранилища, вода может охлаждаться в специальных охладительных башнях (градирнях), которые благодаря своим размерам обычно являются самой заметной частью атомной электростанции.
Помимо основных функциональных частей электростанции в её состав входят также ряд вспомогательных систем. Например, для предохранения персонала АЭС от радиационного облучения реактор окружают биологической защитой, основным материалом для которой служат бетон, вода, серпентиновый песок. Оборудование реакторного контура должно быть полностью герметичным. Предусматривается система контроля мест возможной утечки теплоносителя, принимают меры, чтобы появление неплотностей и разрывов контура не приводило к радиоактивным выбросам и загрязнению помещений АЭС и окружающей местности. Оборудование реакторного контура обычно устанавливают в герметичных боксах, которые отделены от остальных помещений АЭС биологической защитой и при работе реактора не обслуживаются. Радиоактивный воздух и небольшое количество паров теплоносителя, обусловленное наличием протечек из контура, удаляют из необслуживаемых помещений АЭС специальной системой вентиляции, в которой для исключения возможности загрязнения атмосферы предусмотрены очистные фильтры и газгольдеры выдержки.
 
Достоинства атомных станций:
Отсутствие вредных выбросов;
Выбросы радиоактивных веществ в несколько раз меньше угольной электростанции аналогичной мощности;
Небольшой объём используемого топлива, возможность после его переработки использовать многократно;
Высокая мощность: 1000—1600 МВт на энергоблок;
Низкая себестоимость энергии, особенно тепловой.
Недостатки атомных станций:
Облучённое топливо опасно, требует сложных и дорогих мер по переработке и хранению;
Нежелателен режим работы с переменной мощностью для реакторов, работающих на тепловых нейтронах;
При низкой вероятности инцидентов, последствия их крайне тяжелы
Большие капитальные вложения, как удельные, на 1 МВт установленной мощности для блоков мощностью менее 700—800 МВт, так и общие, необходимые для постройки станции, её инфраструктуры, а также в случае возможной ликвидации.

 

Ключевые слова

 

Области техники и экономики

 

Применение эффекта

 
На сегодняшний день атомные электростанции, становятся основой энергетики многих стран. Помимо производства электроэнергии и тепла ввиду возрастающего интереса к водородным источникам энергии (топливный элемент) АЭС рассматриваются как производители водородного топлива. Помимо совершенствования стационарных реакторов ведутся разработки плавающих АЭС. Преимущество атомной энергетики состоит в том, что она требует существенно меньших количеств исходного сырья и земельных площадей, чем тепловые станции, не загрязняет атмосферу дымом и сажей. Опасность состоит в возможности возникновения катастрофических аварий реактора, а также в реально не решенной проблеме утилизации радиоактивных отходов и утечке в окружающую среду небольшого количества радиоактивности. Мощность одного энергоблока АЭС может превышать 1ГВт.
На сегодняшний день существует несколько сотен АЭС по всему миру. Наибольшее количество атомных электростанций находится в США, России и ЕС.

Реализации эффекта

РБМК (Реактор Большой Мощности Канальный) - двухцелевой канальный кипящий графито-водный ядерный реактор.
Одной из целей при разработке реактора РБМК было улучшение топливного цикла. Решение этой проблемы связано с разработкой конструкционных материалов, слабо поглощающих нейтроны и мало отличающихся по своим механическим свойствам от нержавеющей стали. Снижение поглощения нейтронов в конструкционных материалах даёт возможность использовать более дешёвое ядерное топливо с низким обогащением урана (по первоначальному проекту - 1,8 %).
 
Реактор РБМК-1000

Реактор РБМК-1000

Рисунок 1.  
Основу активной зоны РБМК-1000 составляет графитовый цилиндр высотой 7 м и диаметром 11,8 м, сложенный из блоков меньшего размера, который выполняет роль замедлителя. Графит пронизан большим количеством вертикальных отверстий, через каждое из которых проходит труба давления (также называемая технологическим каналом (ТК)). Центральная часть трубы давления, расположенная в активной зоне, изготовлена из сплава циркония (Zr + 2,5 % Nb), обладающего высокими механическими и коррозионными свойствами, верхние и нижние части трубы давления - из нержавеющей стали. Циркониевая и стальные части трубы давления соединены сварными переходниками.
В каждом канале установлена кассета, составленная из двух тепловыделяющих сборок (ТВС) - нижней и верхней. В каждую сборку входит 18 стержневых ТВЭЛов. Оболочка ТВЭЛа заполнена таблетками из двуокиси урана. По первоначальному проекту обогащение по урану 235 составляло 1,8%, но по мере накопления опыта эксплуатации РБМК оказалось целесообразным повышать обогащение. Это позволило увеличить управляемость реактора, повысить безопасность и улучшить его экономические показатели. Так, после аварии на Ленинградской АЭС в 1975 г. был осуществлён переход на топливо с обогащением 2,0%, после аварии на Чернобыльской АЭС в 1986 г. - на топливо с обогащением 2,4%. В 90-е годы был начат переход на топливо с обогащением 2,6%. В настоящее время осуществляется переход на топливо с обогащением 2,8%.
Преобразование энергии в блоке АЭС с РБМК происходит по одноконтурной схеме. Кипящая вода из реактора пропускается через барабаны-сепараторы. Затем насыщенный пар (температура 284 °C) под давлением 65 атм поступает на два турбогенератора электрической мощностью по 500 МВт. Отработанный пар конденсируется, после чего циркуляционные насосы подают воду на вход в реактор.
Реактор РБМК-1000 спроектирован для четырёх блочных АЭС: Ленинградской, Курской, Чернобыльской, Смоленской.
5-й энергоблок курской АЭС строится по новой архитектуре активной зоны (меньше графита, уменьшен коэффициэнт реактивности и возможный паровой коэффициент), которая исключает чернобыльское развитие событий в случае нештатных ситуаций, а так-же не требует выгорающих поглотителей и сильного обогащения.

Активная зона ВВЭР-440 набрана из 349 шестигранных кассет, часть которых используется как рабочие органы СУЗ. Внутри кожуха кассеты смонтировано по треугольной решётке 126 стержневых ТВЭЛов диаметром 9,1 мм. Сердечник ТВЭЛа (спечённая двуокись урана с обогащением 3,5 %), диаметром 7,5 мм заключён в оболочку толщиной 0,6 мм. Материал кожуха кассеты и оболочки ТВЭЛа — цирконий, легированный ниобием (1 %).
ВВЭР-440 работает в режиме 4—6 частичных перегрузок кассет за кампанию, длящуюся примерно 3—6 лет. Через каждые 280—290 сут в ВВЭР-440 заменяется 1/4—1/6 часть кассет. Сначала кассеты удаляют из центральной области активной зоны, а на их место переставляют кассеты с периферии активной зоны. Освобождённые места на периферии активной зоны заполняют свежими кассетами. Перегрузка кассет производится под защитным слоем воды толщиной 5 м, ослабляющим дозу излучения в реакторном зале ниже предельно допустимой.
В настоящее время для реакторов ВВЭР (и РБМК) разработано топливо с выгорающим поглотителем нейтронов (гадолиний, эрбий — для ВВЭР, эрбий — для РБМК) который позволяет больше обогащать свежее топливо, и иметь больший запас реактивности в течение топливной кампании, что позволяет использовать одну кассету с топливом не 3—4 года, а 5—6 лет при практически равной стоимости, что позволяет снизить затраты на топливо примерно на 40 %.
Мощностный коэффициент реактивности ВВЭР — отрицательная величина. На Нововоронежской АЭС он используется для увеличения интервала между перегрузками кассет во время максимального потребления электроэнергии осенью и зимой. Перед частичной перегрузкой реактор переводят на некоторое время в режим саморегулирования. Мощность реактора медленно понижается, вследствие чего освобождается реактивность. Она и расходуется на компенсацию дополнительного выгорания топлива.
Активная зона ВВЭР-440 размещена в толстостенном корпусе из стали. Он имеет наружный диаметр 3,8 м, высоту 11,2 м и рассчитан на работу под давлением 125 атм. В корпусе имеется два ряда патрубков для входа и выхода теплоносителя. Сверху корпус закрывается крышкой.
На внутреннюю стенку корпуса падают нейтронное и γ-излучение. От дозы излучения зависят изменение свойств материала корпуса и термические напряжения в корпусе. Поэтому дозу излучения в корпусе снижают водным и стальным экранами, расположенными между активной зоной и корпусом. Толщина водного экрана равна 20 см, стального — 9 см.
СУЗ ВВЭР-440 имеет две независимые системы: систему АРК и систему борного регулирования. Первая система из 37 АРК обеспечивает управление реактором в нестационарных режимах и выключение реактора. Нижним ярусом АРК служит кассета с ТВЭЛами. Верхний ярус АРК заполнен элементами из бористого сплава. АРК укреплены на штоках, выходящих наверх через крышку корпуса. Они перемещаются в вертикальном направлении электродвигателями и в аварийных случаях сбрасываются в нижнюю часть корпуса. После сбрасывания место топливного яруса АРК в активной зоне занимает поглотитель из бористого сплава.
Медленные изменения реактивности (выгорание ядерного топлива, отравление, шлакование и др.) компенсирует система борного регулирования. Применение системы борного регулирования упростило СУЗ реактора, и количество АРК уменьшилось с 73 (ВВЭР-365) до 37 (ВВЭР-440).
Схема блока состоит из двух контуров. В первом контуре циркулирует вода под давлением 125 атм. Вода с температурой 269 °C поступает в кольцевую щель между стенкой корпуса и активной зоной и опускается вниз. Затем она движется вверх и, охлаждая ТВЭЛы, нагревается до 300 °C. В парогенераторах отведённое от реакторов тепло расходуется на получение насыщенного пара (давление 44 атм, температура 275 °C), вращающего турбогенераторы.

Литература

Большая советская энциклопедия. / Гл. ред. А.М.Прохоров. М., изд. Советская энциклопедия

Маргулова Т. Х., Атомные электрические станции, 2 изд., М., 1974

Тепловые и атомные электрические станции. Справочник. Кн. 3. М., 1985

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина