Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Нерасчетные пульсационные режимы сгорания в камерах сгорания ПВРД и ЖРД
Нерасчетные пульсационные режимы сгорания в камерах сгорания ПВРД и ЖРД

Анимация

Описание

Под высокоскоростным прямоточным воздушным реактивным двигателем (ПВРД) подразумевается ПВРД с числами Маха на входе в воздухозаборное устройство (ВЗУ) двигателя больше единицы, что может соответствовать скорости летательного аппарата от чисел Маха полета Мп~1 до Мп~20. Большое число проведенных экспериментальных исследований показало, что возможна реализация нескольких различных режимов горения в камере сгорания высокоскоростного ПВРД. В случае многопоясной подачи горючего, в камере сгорания могут реализовываться разные режимы горения в разных поясах подачи. Для простоты описания полученных режимов работы рассмотрим двигатель с одним поясом подачи горючего. В процессе разгона и полета, в камере сгорания могут существовать три рабочих режима горения, соответствующих работе различных двигателей. Это следующие режимы.
Схема ПВРД. 1. Встречный поток воздуха; 2. Центральное тело. 3. Входное устройство. 4. Топливная форсунка. 5. Камера сгорания. 6. Сопло. 7. Реактивная струя.
Рис.1
 
Первый – горение в дозвуковом потоке. Поток горючего может быть как сверх – так и дозвуковым. Второй – горение в скачках уплотнения и дозвуковых зонах. Дозвуковые зоны горения могут являться отрывными зонами с обратными токами и просто зонами дозвукового течения газа. Они могут располагаться как у стенок, так и в основном потоке. Поток в месте подачи горючего сверхзвуковой. Так как в данном случае скорость потока переходит через скорость звука, то данный режим можно назвать трансзвуковым, а соответствующий ПВРД – трансзвуковым ПВРД (ТПВРД). Третий – горение в сверхзвуковом потоке. Поток в месте подаче горючего сверхзвуковой и остается сверхзвуковым (М>1) на протяжении всей камеры сгорания. Для реализации эффективного рабочего процесса при всех вышеуказанных режимов горения необходимо обеспечить требуемое распределение горючего в поперечном сечении камеры сгорания, что может быть сделано только при использовании пилонов для подачи горючего. Для первого режима необходимо предпринимать дополнительные меры, обеспечивающие воспламенение и стабилизацию горения в камере сгорания. Это может быть реализовано с помощью специальных воспламенителей и стабилизаторов. Для второго режима процесс горения стабилизируется в скачках уплотнения и дозвуковых зонах и не требует дополнительных мер. Реализуемость такого рабочего режима обуславливается достаточно высокими значениями температуры и давления окислителя и правильно выбранным расширением камеры сгорания для заданных коэффициентов избытка окислителя a. На третьем режиме воспламенение (самовоспламенение) горючего будет обусловлено высокими термодинамическими параметрами окислительного потока (воздуха), и процесс горения в основном будет зависеть от эффективности смешения сверхзвуковых потоков горючего и окислителя. Все три рабочих режима горения могут быть реализованы как в камере сгорания изменяемой геометрии, так и в комбинированной (с многопоясной подачей) камере сгорания фиксированной (неизменяемой) геометрии.

 

 

Ключевые слова

 

Области техники и экономики

 

Применение эффекта

Любая камера сгорания ПВРД с дозвуковой скоростью потока выполнена из типичных элементов. К таким элементам относится форкамера – устройство, обеспечивающее мощный пламенный источник поджигания основного количества горючей смеси. Форкамера представляет собой небольшую камеру сгорания с малой скоростью движения горючей смеси.
Для обеспечения устойчивой работы, сокращения длины камеры применяются стабилизирующие устройства, представляющие собой плохо обтекаемые тела – отдельные конусы, кольца из углового профиля. Зона обратных потоков, образующаяся за стабилизаторами, обеспечивает необходимую устойчивость работы камеры сгорания.
Смесеобразование достигается с помощью топливного коллектора, представляющего собой обычно кольцо, выполненное из трубки круглого или эллиптического сечения, в которое подается горючее. Горючее попадает в камеру сгорания через форсунки, установленные на кольце коллектора. Подача горючего может осуществляться как против потока, так и по его направлению. Коллектор устанавливается на небольшом расстоянии перед каждым стабилизатором.
Камера сгорания ГПВРД не может быть выполнена, как камера сгорания "дозвукового" ПВРД или СПВРД, так как всякое загромождение сечения при числе М > 1,0 потока приведет к образованию сильных возмущений с переходом сверхзвукового потока в дозвуковой. Поэтому камера сгорания ГПВРД представляет собой свободный канал, подача горючего в который происходит со стенок и рассредоточена по длине.
Воспламенение горючей смеси может достигаться за счет высокой температуры в потоке или пристеночном пограничном слое. Не исключено поджигание горючего специально организованными "факельными" источниками, которые могут быть образованы при истечении продуктов сгорания твердого топлива в специальном газогенераторе. Возможно также создание специальных горелок с подачей в них жидкого горючего и окислителя и образование дежурного факела, который может действовать без ограничения времени работы. Процесс сгорания топлива в камере сгорания ГПВРД может осуществляться с использованием детонационного горения. Резкий подъем давления и температуры в скачке ускоряет воспламенение и горение топлива.

 

Реализации эффекта

В таких двигателях используется однокомпонентное жидкое топливо, которое при взаимодействии с катализатором разлагается с образованием горячего газа. Хотя однокомпонентные ЖРД развивают небольшой удельный импульс (в диапазоне от 150 до 255 с) и намного уступают по эффективности двухкомпонентным, их преимуществом является простота конструкции. Топливо, например гидразин или перекись водорода, хранится в единственной емкости. Под действием вытесняющего давления жидкость через клапан поступает в камеру сгорания, в которой катализатор, например, оксид железа, вызывает ее разложение (гидразина на аммиак и водород, а перекиси водорода – на водяной пар и кислород). Однокомпонентные ЖРД обычно используются как двигатели малой тяги (иногда их тяга составляет всего лишь несколько ньютонов) в системах ориентации и стабилизации космических аппаратов и тактических ракет, для которых простота и надежность конструкции и малая масса являются определяющими критериями. Можно привести замечательный пример использования гидразинового двигателя малой тяги на борту первого американского спутника связи TDRS-1; этот двигатель работал в течение нескольких недель, чтобы вывести спутник на геостационарную орбиту, после того как на ускорителе случилась авария и спутник оказался на значительно более низкой орбите.
Наиболее простой однокомпонентный двигатель работает от баллона сжатого холодного газа (например, азота), выпускаемого через клапан. Такие струйные двигатели применяются там, где недопустимо тепловое и химическое воздействие выхлопной струи газа или продуктов сгорания и где основным требованием является простота конструкции. Этим требованиям удовлетворяют, например, индивидуальные устройства маневрирования космонавтов (УМК), расположенные в ранце за спиной и предназначенные для перемещения при работах вне космического корабля. УМК работают от двух баллонов со сжатым азотом, который подается через соленоидные клапаны в двигательную установку, состоящую из 16 двигателей.

 

В однокомпонентных ЖРД горючее и окислитель хранятся в отдельных баках и путем вытеснения или с помощью насосов подаются в камеру сгорания, где они воспламеняются и сгорают, создавая высокоскоростную газовую струю. В качестве окислителя часто используется жидкий кислород, что связано с простотой его получения из атмосферного воздуха. Хотя по сравнению со многими другими химическими веществами жидкий кислород сравнительно безопасен, для его хранения должны использоваться только очень чистые емкости, потому что кислород вступает в химическую реакцию даже с жировыми пятнами, оставляемыми отпечатками пальцев, что может привести к возгоранию.
В качестве горючего в паре с кислородом чаще всего используются тяжелые углеводороды или жидкий водород. Теплота сгорания углеводородного горючего на единицу объема, например, очищенного керосина или спирта, выше, чем водорода. Углеводородное топливо горит ярким оранжевым пламенем. Основными продуктами сгорания смеси кислород/углеводород являются углекислый газ и пары воды. Удельный импульс такого топлива может достигать 350 с.
Жидкий водород требует более глубокого охлаждения, чем жидкий кислород, однако его теплота сгорания на единицу массы выше, чем у углеводородных горючих. Водород горит почти невидимым голубым пламенем. Основным продуктом сгорания кислородо-водородной смеси является перегретый водяной пар. Удельный импульс двигателей на этом топливе может достигать от 450 до 480 с в зависимости от конструкции двигателя. (Двигатели, использующие жидкий водород, обычно работают в режиме избытка горючего, что позволяет уменьшить массовый расход топлива и повысить экономичность.)
За прошедшие годы были испытаны многие другие комбинации горючего и окислителя, однако от большинства из них пришлось отказаться из-за их токсичности. Например, фтор является более эффективным окислителем, чем кислород, однако он чрезвычайно токсичен и агрессивен как в исходном состоянии, так и в продуктах сгорания. Различные смеси азотной кислоты с окислами азота раньше использовались в качестве окислителя, однако их достоинства перевешивались опасностью хранения и эксплуатации таких двигателей и ракет.
Не всегда легко сделать выбор между углеводородным горючим и жидким водородом. Обычно для первых ступеней ракет используют жидкое углеводородное (или смесевое твердое) топливо для прохождения плотных слоев атмосферы на первых минутах полета. Конечно, жидкий водород – очень эффективное горючее, однако из-за его малой плотности для первой ступени потребовались бы большие топливные баки, что привело бы к увеличению веса конструкции и лобового сопротивления ракеты. На больших высотах и в космосе чаще применяются водородные двигатели, где их преимущества проявляются в полной мере.
Такой подход осуществлен на ракете-носителе «Сатурн-5», где керосин используется в качестве горючего на первой ступени, жидкий водород – на второй и третьей ступенях, а жидкий кислород в качестве окислителя на всех трех ступенях. Аналогичный подход использован на «Шаттле», где в качестве ускорителей служат два мощных твердотопливных двигателя, а три двигателя основного блока работают на жидких кислороде и водороде, которые обеспечивают большой удельный импульс.

 

Литература

1. Стечкин Б. С. Избранные труды. Теория тепловых двигателей. — М.: Наука, 1977. — 410 с.

2. Казанджан П. К., Алексеев Л. П., Говоров А. Н., Коновалов Н. Е., Ю. Н. Нечаев, Павленко В. Ф., Федоров Р. М. Теория реактивных двигателей. М. Воениздат. 1955

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина