Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Паровая турбина
Паровая турбина

Описание

Паровая турбина — вид парового двигателя, в котором струя пара, действуя на лопатки ротора, вызывает его вращение. В настоящее время паровые турбины применяются вместе с котлами, работающими на органическом топливе или с ядерными реакторами на электростанциях и крупных судах и кораблях. Паровые турбины используются в качестве первичных двигателей промышленных когенерационных установок в течение многих лет. Пар, образующийся в паровом котле, расширяясь, под высоким давлением проходит через лопатки турбины. Турбина вращается и производит механическую энергию, используемую генератором для производства электричества.
Электрическая мощность системы зависит от того, насколько велик перепад давления пара на входе и выходе турбины.
Для эффективной работы пар в турбину должен подаваться с высокими давлением и температурой (42 бар/400°С или 63 бар/480°С), (советские конденсационные турбины К-800-240 номинальная мощность 800 МВт, начальное давление 240 бар, 540°С). Такие условия предъявляют повышенные требования к котельному оборудованию, что приводит к прогрессивному росту капитальных расходов и стоимости сопровождения.
Преимуществом технологии является возможность использования в котле самого широкого спектра топлив, включая твердые. Однако использование тяжёлых нефтяных фракций и твердого топлива снижает экологические показатели системы, которые определяются составом отходящих из котла продуктов горения. По умолчанию, паровые турбины производят много больше тепла, чем электричества, в результате имеют место высокие затраты на установленную мощность.
В основе действия паровой турбины лежат два принципа создания окружного усилия на роторе, известные с давних времен, - реактивный и активный. В 130 г. до н.э. Герон Александрийский изобрел устройство под названием "эолипил" (рисунок 1 левый). Оно представляло собой наполнявшуюся паром полую сферу с двумя Г-образными соплами, расположенными с противоположных сторон и направленными в разные стороны. Пар вытекал из сопел с большой скоростью, и за счет возникающих сил реакции сфера вращалась.
Второй принцип основан на преобразовании потенциальной энергии пара в кинетическую. Его можно проиллюстрировать на примере машины Джованни Бранки (рисунок 1 центральный), построенной в 1629 г. В этой машине струя пара приводила в движение колесо с лопатками, напоминающее колесо водяной мельницы.
Принцип действия паровой турбины
Рисунок 1
В паровой турбине (рисунок 1 правый) используются оба указанных принципа. Струя пара под высоким давлением направляется на криволинейные лопатки, закрепленные на дисках. При обтекании лопаток струя отклоняется, и диск с лопатками начинает вращаться. Двигаясь между лопатками в расширяющемся канале (ведь толщина лопаток по мере приближения к хвостовику уменьшается), пар расширяется и ускоряется. В соответствии с законами сохранения энергии и импульса на колесо турбины действует сила, раскручивающая его. В результате энергия давления (потенциальная энергия) пара преобразуется в кинетическую энергию вращения турбины.
Турбины, у которых весь процесс расширения пара и связанного с ним ускорения парового потока происходит в соплах, получили название активных. На практике пользуются многоступенчатыми турбинами, самой простой из которых является турбина Бранки. Ряд дисков, укрепленных на общем валу, разделен перегородками. В этих перегородках устраивались профилированные отверстия - сопла. На каждой из построенных таким образом ступеней срабатывается часть энергии пара. Преобразование кинетической энергии парового потока происходит без дополнительного расширения пара в каналах рабочих лопаток. Активные многоступенчатые турбины получили широкое распространение в стационарных установках, а также в качестве судовых двигателей.
КПД паровой турбины расчитывается при помощи следующей формулы:
где Wout - механическая работа, а Qin - затраченное количество теплоты.
В современных турбинах пар расширяется постепенно по мере прохождения через несколько ступеней, каждая из которых представляет собой два венца лопаток: один - неподвижный (с направляющими лопатками, закрепленными на корпусе турбины), другой - подвижный (с рабочими лопатками на диске, закрепленном на вращающемся валу). Плоскости лопаток неподвижных и подвижных венцов были взаимно перпендикулярны. Пар, направляемый на неподвижные лопатки, расширялся в междулопаточных каналах, скорость его увеличивалась, и он, попадая на подвижные лопатки, заставлял их вращаться.

 

 

Ключевые слова

 

Области техники и экономики

 

Применение эффекта

Паровые турбины являются основным двигателем теплоэлектростанций (ТЭС) и атомных электростанций (АЭС).Паровые турбины (рисунок 5) современных тепловых электростанций имеют мощность до 1200 МВт.
Монтаж паровой турбины, произведённой Siemens, Германия
Рисунок 5
Электрическая мощность паровых турбин зависит от перепада давления пара на входе и выходе установки. Общая эффективность паровых турбин (электроэнергия +тепло) доходит до ~85% в расчете на единицу потраченного топлива. Мощность паровых турбин (единичной установки) ~ до 1000 МВт. Паровые турбины изготавливают двух типов: турбины с противодавлением (давление пара на выходе турбины выше атмосферного) и конденсационные турбины (давление пара на выходе турбины ниже атмосферного).

Реализации эффекта

В турбину, работающую по циклу Ранкина (Pис.1), пар поступает от внешнего источника пара; дополнительного подогрева пара между ступенями турбины нет, есть только естественные потери тепла.
Турбина, работающая по циклу Ранкина
Рис. 1

В этом цикле (рис.1) пар после первых ступеней направляется в теплообменник для дополнительного подогрева (перегрева). Затем он снова возвращается в турбину, где в последующих ступенях происходит его окончательное расширение. Повышение температуры рабочего тела позволяет повысить экономичность турбины.
Турбина, работающая по циклу с промежуточным подогревом
Рис. 1

Пар на выходе из турбины обладает еще значительной тепловой энергией, которая обычно рассеивается в конденсаторе. Часть энергии может быть отобрана при конденсации отработанного пара. Некоторая часть пара может быть отобрана на промежуточных ступенях турбины (рис.1) и использована для предварительного подогрева, например, питательной воды или для каких-либо технологических процессов.
Турбина, работающая по циклу с промежуточным отбором и утилизацией тепла отработанного пара
Рис.1

 

Литература

1. Зубков Б.В., Чумаков С.В. Энциклопедический словарь юного техника 1988 г.

2. Вырубов Д. Н. и др. Двигатели внутреннего сгорания: теория поршневых и комбинированных двигателей. М.: Машиностроение, 1983.

3. Двигатели внутреннего сгорания: Устройство и работа поршневых и комбинированных двигателей./ Учебник для студентов вузов/ под ред. А. С. Орлина, М. Г. Круглова.3-е изд., перераб. и доп. М.: Машиностроение, 1980.

4. Двигатели внутреннего сгорания. Под ред. д-ра техн. наук, проф. В.Н.Луканина. М.: Высш. школа, 1985.

5. Хачиян А.С. и др. Двигатели внутреннего сгорания. М.: Высш. шк., 1985.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина