Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Конденсатор пара
Конденсатор пара

Анимация

Описание

 

Конденсатор пара – теплообменный аппарат для конденсации (превращения в жидкость) пара при заданном давлении путем охлаждения. Процесс конденсации пара происходит в конденсационной установке при постоянном давлении за счет подогрева охлаждающей воды, температура которой ниже температуры насыщения пара. При конденсации водяного пара отнимается теплота парообразования, отсасываются неконденсирующиеся газы и удаляется образующаяся вода. Тепло отбирается водой более низкой температуры и только в особых случаях (конденсаторы паровозов и энергопоездов) — воздухом. Водяной пар может при этом непосредственно соприкасаться с охлаждающей водой (смешивающие конденсаторы) или отдавать тепло через стенки трубок, внутри которых протекает охлаждающая вода (поверхностные конденсаторы).
Кондесация может происходить при любом давлении. Чем меньше температура отвода теплоты цикла (что соответствует более низкому давлению конденсации), тем выше тепловая экономичность паротурбинной установки. Характеристики водяного пара таковы, что, добиваясь расширения пара в турбине до давлений, меньших атмосферного, можно увеличить теплоперепад в ней на 25—30 и даже 40 % в зависимости от начальных параметров пара. Поэтому основная задача конденсационной установки — установление и поддержание разрежения в выхлопном патрубке турбины, а тем самым и внутри конденсатора.
На Рисунке 1 представлена схема конденсационной установки. Из выходного патрубка турбины в паровой объем поверхностного конденсатора поступает пар, отработавший в турбине. Через трубки конденсатора циркуляционным насосом прокачивается охлаждающаяся вода. Конденсация пара в конденсаторе происходит за счет нагрева циркуляционной охлаждающей воды. Образовавшийся конденсат стекает в нижнюю часть конденсатора и конденсатным насосом возвращается в цикл. Для создания разрежения в выхлопном патрубке турбины и конденсаторе в состав конденсационной установки входит пароструйный эжектор, к которому подводят пар одного из отборов турбины (а иногда и острый пар). В связи с разрежением в конденсаторе в его паровой объем постоянно поступает воздух из окружающей среды, поэтому паровой эжектор работает непрерывно, отсасывая этот воздух из конденсатора вместе с некоторым количеством пара.
Схема конденсационной установки
Рисунок 1
Обозначения рисунка 1: 1 - пар из выходного патрубка турбины; 2 - поверхностный конденсатор; 3 - циркуляционный насос; 4 - конденсатный насос; 5 - пароструйный эжектор; 6 - подвод пара к эжектору; 7 - отсос паровоздушной смеси).
 

 

 

Ключевые слова

 

Области техники и экономики

 

Используемые естественнонаучные эффекты

Конденсация паров при адиабатном расширении (Конденсация паров при адиабатном расширении)
Адиабатическое расширение газа в пустоту (Адиабатическое расширение газа в пустоту)
Процесс перехода пара в жидкость, заполняющую капилляры (Капиллярная конденсация)

 

Разделы естественных наук используемых естественнонаучных эффектов

2Фазовые переходы
2Жидкости
2Реальные газы
3Термодинамика
1Сверх и гиперзвуковые потоки в отсутствие незакоепленных необтекаемых тел
2Общие вопросы газо- и гидродинамики
1Идеальный газ
1Аэро- и гидростатика

 

Применение эффекта

Конденсаторы пара применяются в конденсационных установках паровых двигателей для конденсации водяного пара, в холодильных установках для конденсации паров хладагентов, например, фреона, а также в тепловой и атомной энергетике.
Конденсаторы применяются на тепловых и атомных электростанциях для конденсации отработавшего в турбинах пара. При этом на каждую тонну конденсирующегося пара приходится около 50 тонн охлаждающей воды. Поэтому потребность ТЭС и особенно АЭС в воде очень велика — до 600 тысяч м³/час. В маловодных районах охлаждение конденсаторов турбин может производится воздухом (примером могут служить воздушно-конденсационные установки на Разданской ГРЭС, Армения), однако это ухудшает КПД турбин. В турбинах с противодавлением конденсатор отсутствует — в этом случае весь отработанный пар поступает на производственные нужды.
В холодильных установках конденсаторы используются для конденсации паров хладагентов, например, фреона. В химической технологии конденсаторы используют для получения чистых веществ (дистиллятов) после перегонки. Принцип конденсации успешно применяется также для разделения смеси паров различных веществ, так как их конденсация происходит при различных температурах.
Конденсатор пара
Рисунок 1

 

Реализации эффекта

Охлаждающая вода разбрызгивается в пространстве смешивающего конденсатора. Пар конденсируется на поверхности капель воды и стекает вместе с ней в поддоны, откуда откачивается конденсатными насосами. Взаимное расположение потоков пара и воды может параллельное , противоточное или поперечноточное. При противотоке теплообмен более эффективен.
Поскольку в конденсат попадает охлаждающая вода с растворенным в ней воздухом и другими примесями, такая смесь не может быть использована для современных паровых котлов, которые предъявляют высокие требования к подготовке питательной воды. Поэтому смешивающие конденсаторы применяются либо в малых паровых и холодильных машинах, либо в системах охлаждения с т. н. «сухими градирнями», где роль охладителей выполняют закрытые радиаторы. Поэтому охлаждающая вода, проходя через радиаторы, мало загрязняется и может быть присоединена к потоку конденсата.

В поверхностных конденсаторах нет прямого контакта конденсата с охлаждающей водой, поэтому они применяются для любых систем прямого и оборотного охлаждения, в том числе и с охлаждением морской водой.
Схема устройства поверхностного конденсатора
Рисунок 1
В корпусе 1 поверхностного конденсатора установлены трубные доски 2, в отверстия которых завальцованы тонкостенные трубки 3. Охлаждающая поверхность конденсатора образуется совокупностью поверхностей трубок, называемых «трубными пучками». Трубки выполняются из латуни или нержавеющей стали, они имеют, как правило, диаметр 24-28 мм и толщину 1-2 мм. Места вальцовки — основной путь попадания примесей в конденсат. Пространство между трубными досками и боковыми стенками конденсатора 4 представляют соборй водяные камеры 5 и могут быть разделены перегородками на несколько отделений. Охлаждающая циркуляционная вода подводится под напором через патрубок 6 к нижнему отсеку водяной камеры, проходит по трубкам в поворотную камеру, проходит по другому пучку трубок и удаляется через патрубок 7. При этом вода нагревается примерно на 10 °C. Такой конденсатор называется двухходовым. Могут быть также одноходовые, трёхходовые и даже четырёхходовые конденсаторы. Одноходовые конденсаторы применяются, как правило, в судовых установках, где увеличение расхода охлаждающей воды не имеет практического значения, а также в кондесаторах турбоустановок АЭС, где это диктуется технико-экономическими соображениями.
Пар входит в конденсатор через горловину 8 цилиндра низкого давления турбины, попадает на холодную поверхность трубок 3, конденсируется, стекает вниз и скапливается в сборнике конденсата 9, откуда откачивается конденсатными насосами. Бо́льшая часть пара (свыше 99 %) конденсируется в т. н. зоне массовой конденсации, куда проникает сравнительно мало воздуха. Температура насышенного пара не превышает обычно 50-60 °С. В зоне охлаждения парциальное давление пара меньше и температура паровоздушной смеси ниже. В этой зоне возможно переохлаждение конденсата, что неблагоприятно сказывается на эффективности установки в целом. Зону охлаждения отделяют перегородкой.
При конденсации в паровой части конденсатора образуется разрежение, то есть давление становится ниже атмосферного. При этом через неплотности в корпусе и через места вальцовки трубок проникает наружный воздух и воздух, растворенный в воде (примерно 0,05-0,1 % массового расхода пара). Попадание кислорода в конденсат влечет возможность коррозии оборудования. Кроме того, примесь воздуха значительно ухудшает теплотехнические характеристики конденсатора, так как коэффициент теплоотдачи при конденсации пара составляет несколько тысяч кВт/(м²°С), а для паровоздушной смеси с большим содержанием воздуха — всего несколько десятков кВт/(м²°С). Воздух отсасывается пароструйным или водоструйным эжектором через патрубок 10. Так как воздух в конденсаторе смешан с паром, то отсасывать приходится паровоздушную смесь. Попадание в конденсат сырой охлаждающей воды приводит к солевому загрязнению пароводяного тракта, поэтому химический состав конденсата необходимо контролировать. На электростанциях после конденсатных насосов устраивают системы очистки конденсата.

 

Литература

1. Берман Л. Д. О теории теплообмена при конденсации пара в пучке горизонтальных труб. «Известия ВТИ», 1953, № 3.

2. Костюк А. Г.,Фролов В. В.,Булкин А. Е.,Трухний А. Д. Турбины тепловых и атомных электрических станций / Под ред. Костюка А. Г.,Фролова В. В. — М.: Изд. МЭИ, 2001. — 488 с.

3. Лесохин Е. И. Теплообменники-конденсаторы в процессах химической технологии, 1990, 289 с.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина