Межотраслевая Интернет-система поиска и синтеза физических принципов действия преобразователей энергии

Стартовая страница

О системе

Технические требования

Синтез

Обучающий модуль

Справка по системе

Контакты
Искать:
  Расширенный   Формализованый   По связи разделов
 А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я 
Общий каталог эффектов

Квантовый гироскоп
Гироскоп, действие которого основано на использовании квантовых свойств электронов, атомных ядер и фотонов

Описание

Квантовый гироскоп, прибор, позволяющий обнаруживать вращение тела и определять его угловую скорость, основанный на гироскопических свойствах электронов, атомных ядер или фотонов.
Гироскоп  - быстро вращающееся твёрдое тело, ось вращения которого может изменять своё направление в пространстве. Свойства гироскопа проявляются при выполнении двух условий: 1) ось вращения гироскопа должна иметь возможность изменять своё направление в пространстве; 2) угловая скорость вращения гироскопа вокруг своей оси должна быть очень велика по сравнению с той угловой скоростью, которую будет иметь сама ось при изменении своего направления.
Первое свойство уравновешенного гироскопа с тремя степенями свободы состоит в том, что его ось стремится устойчиво сохранять в мировом пространстве приданное ей первоначальное направление. Если эта ось вначале направлена на какую-нибудь звезду, то при любых перемещениях основания прибора и случайных толчках она будет продолжать указывать на эту звезду, меняя свою ориентировку относительно земных осей. Впервые это свойство гироскопа использовал французский учёный Л. Фуко для экспериментального доказательства вращения Земли вокруг её оси (1852г.). Отсюда и само название «гироскоп», что в переводе означает «наблюдать вращение».
Второе свойство гироскопа обнаруживается, когда на его ось (или рамку) начинают действовать сила или пара сил, стремящиеся привести ось в движение (т. е. создающие вращающий момент относительно центра подвеса). Под действием силы Р (рис.1) конец А оси АВ гироскопа будет отклонять не в сторону действия силы, как это было бы при невращающемся роторе, а в направлении, перпендикулярном к этой силе; в результате гироскоп вместе с рамкой 1 начнёт вращаться вокруг оси DE, притом не ускоренно, а с постоянной угловой скоростью. Это вращение называется прецессией; оно происходит тем медленнее, чем быстрее вращается вокруг своей оси АВ сам гироскоп. Если в какой-то момент времени действие силы прекратится, то одновременно прекратится прецессия и ось АВ мгновенно остановится, т. е. прецессионное движение гироскопа безынерционно.
Действие силы Р на гироскоп с вращающимся ротором; ось АВ движется перпендикулярно направлению силы Р
Рис.1
Величина угловой скорости прецессии определяется по формуле:
или       (1)
где М – момент силы Р центра О, Ω – угловая скорость собственного вращения гироскопа вокруг оси АВ, I – момент инерции гироскопа относительно той же оси, h = АО – расстояние от точки приложения силы до центра подвеса гироскопа; второе равенство имеет место, когда сила Р параллельна оси DE. Из формулы (1) непосредственно видно, что прецессия происходит тем медленнее, чем больше Ω, точнее, чем больше величина H = IΩ, называется собственным кинетическим моментом гироскопа.
 
 

 

 

Ключевые слова

 

Области техники и экономики

 

Применение эффекта

Несмотря на то что квантовые гироскопы, особенно оптические, непрерывно совершенствуются, их точность и чувствительность ещё уступают лучшим образцам механических гироскопов. Однако квантовые гироскопы обладают рядом существенных преимуществ перед механическими: они не содержат движущихся частей (безынерционны), не требуют арретирования, обладают высокой надёжностью и стабильностью, приводятся в действие в течение короткого промежутка времени, могут выдержать значительные ускорения и работать при низких температурах. Некоторые типы квантовых гироскопов уже применяются не только как высокочувствительные индикаторы вращения, ориентаторы и гирометры, но и как гирокомпасы, гиробуссоли и секстанты.
Первоначально еще в 1962 году физик Брайан Джозефсон из университета Кэмбриджа предположил, что электрический ток может проходить между сверхпроводящими материалами, даже если их будет разделять тонкий слой изолятора. На основе эффекта Джозефсона Ричардом Паккадром и его коллегой по Калифорнийскому университету был сделан квантовый гироскоп, позволяющий обнаруживать вращение тела и определять его угловую скорость, основанный на гироскопических свойствах электронов и атомных ядер.

 

Реализации эффекта

Датчиком оптического гироскопа служит кольцевой лазер, генерирующий две бегущие навстречу друг другу световые волны, которые распространяются по общему световому каналу в виде узких монохроматических световых пучков. Резонатор кольцевого лазера (рис.1) состоит из трёх (или больше) зеркал 1, 2, 3, смонтированных на жёстком основании и образующих замкнутую систему. Часть света проходит через полупрозрачное зеркало 3 и попадает на фотодетектор 5. Длина волны, генерируемая кольцевым лазером (в пределах ширины спектральной линии рабочего вещества), определяется условием, согласно которому бегущая волна, обойдя контур резонатора, должна прийти в исходную точку с той же фазой, которую имела вначале. Если прибор неподвижен, то это имеет место, когда в периметре Р контура укладывается целое число n длин волн λ0, т. е. Р = nλ0. В этом случае лазер генерирует 2 встречные волны, частоты которых одинаковы и равны:
n0 = c/λ0 = cn/P,
(с — скорость света).
Если же весь прибор вращается с угловой скоростью Ω вокруг направления, составляющего угол θ с перпендикуляром к его плоскости (рис. 2), то за время обхода волной контура последний успеет повернуться на некоторый угол. В зависимости от направления распространения волны путь, проходимый ею до совмещения фазы, будет больше или меньше Р. В результате этого частоты встречных волн становятся неодинаковыми. Можно показать, что эти частоты ν и ν+ не зависят от формы контура и связаны с частотой Ω вращения прибора соотношением:
.
Здесь S — площадь, охватываемая контуром резонатора. Фотодетектор, чувствительный к интенсивности света, в этом случае зарегистрирует биения с разностной частотой:
Δν = ν+ - ν- = kFcosθ,
где F = Ω/2π, а k = 8πS/(λ0P). Например, для квадратного гелий-неонового квантового гироскопа со стороной 25 см λ0 = 6×10–5 см, откуда k = 2,5×106. При этом суточное вращение Земли, происходящее с угловой скоростью Ω = 15 град/ч, на широте θ = 60° должно приводить к частоте биений Δν = 15 Гц. Если ось гироскопа направить на Солнце, то, измеряя частоту биений и считая угловую скорость Ω вращения Земли известной, можно с точностью до долей град определить широту θ места, на которой расположен гироскоп.
Интегрирование угловой скорости вращающегося тела по времени (которое может выполняться автоматически) позволяет определить угол поворота, как функцию времени. Предел чувствительности оптических квантовых гироскопов теоретически определяется спонтанным излучением атомов активной среды лазера. Если частоте биений Δν = 1 Гц соответствует угол поворота в 1 град/ч, то предел точности гироскопов равен 10–3 град/ч. В существующих оптических квантовых гироскопах этот предел ещё далеко не достигнут.
Схема лазерного гироскопа: 1, 2, 4 — непрозрачные зеркала; 3 — полупрозрачное зеркало; 5 — фотодетектор.
Рис.1
Квантовый гироскоп
Рис.2

 

В ядерных квантовых гироскопах используются вещества с ядерным парамагнетизмом (вода, органические жидкости, газообразный гелий, пары ртути). Атомы или молекулы таких веществ в основном (невозбуждённом) состоянии обладают моментами количества движения, обусловленными только спинами ядер (электронные же спиновые моменты у них скомпенсированы, т. е. все электроны спарены). Со спинами ядер связаны их магнитные моменты. Если ориентировать магнитные моменты ядер, например при помощи внешнего магнитного поля, а затем ориентирующее поле выключить, то в отсутствие других магнитных полей (например, земного) возникший суммарный магнитный момент М будет некоторое время сохранять своё направление в пространстве, независимо от изменения ориентации датчика. Такой статический квантовый гироскоп позволяет определить изменение положения тела, связанного с датчиком гироскопа.
Т. к. величина момента М будет постепенно убывать благодаря релаксации, то для квантовых гироскопов выбирают вещества с большими временами релаксации, например некоторые органические жидкости, для которых время релаксации t составляет несколько мин, жидкий 3He (около 1 ч) или раствор жидкого 3He (10—3%) в 4He (около года).
В динамическом ядерном гироскопе суммарный ядерный магнитный момент М датчика прецессирует вокруг постоянного магнитного поля Н, жестко связанного с устройством. Вращение датчика вместе с полем Н с угловой скоростью Ω приводит к изменению частоты прецессии магнитного момента М, приблизительно равному проекции вектора Ω на Н. Это изменение регистрируется в виде электрического сигнала. Для получения высокой чувствительности и точности в этих приборах требуется высокая стабильность и однородность магнитного поля Н. Например, для обнаружения изменения частоты прецессии, вызванного суточным вращением Земли, необходимо, чтобы ΔН/Н ≤ 10–9. Для экранировки прибора от действия внешних магнитных полей применяются сверхпроводники. Например, если поворот датчика обусловлен суточным вращением Земли, то остаточное поле в экране не должно превышать 3×10–9э.

 

Электронные квантовые гироскопы аналогичны ядерным, но в них применяются вещества, атомы или молекулы которых содержат неспаренные электроны (например, устойчивые свободные радикалы, атомы щелочных металлов). Хотя времена релаксации электронных спинов малы, электронные квантовые гироскопы перспективны, так как гиромагнитное отношение gэл для электронов в сотни раз больше, чем для ядер, и, следовательно, выше частота прецессии, что важно для многих применений.

 

Литература

1. Привалов В. Е., Фридрихов С. А., Кольцевой газовый лазер // УФН. 1969, т. 97, в. 3, с. 377.

2. Померанцев Н. М., Скроцкий Г. В., Физические основы квантовой гироскопии. // УФН, 1970, т. 100, в. 3, с. 361.

Формализованное описание Показать

Стартовая страница  О системе  Технические требования  Синтез  Обучающий модуль  Справка по системе  Контакты 
Copyright © 2008 РГУ нефти и газа им. И.М. Губкина